

Effect of Alloying on Resistivity

$$\rho = \frac{1}{en\mu_d} = \frac{1}{en\mu_L} + \frac{1}{en\mu_I} = \rho_T + \rho_I$$

In a binary alloy that forms a solid solution, we would expect the above equation to apply, with the temperature-independent impurity contribution ρ_I increasing with the concentration of solute atoms. This means that as the alloy concentration increases, the resistivity ρ increases and becomes less temperature dependent as ρ_I overwhelms ρ_T , leading to $\alpha \ll 1/273$.

Material	Resistivity at 20 °C (nΩ m)	α at 20 °C (1/K)
Nickel	69	0.0064
Chrome	129	0.0030
Nichrome (80%Ni-20% Cr)	1100	0.0004

