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Equilibrium

Boltzmann’s Principle
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We must find some pumping process for gain —
create non-equilibrium condition.
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4 level pumping model

Pumping

2 FE
: - | 8
& E, : Pumping E,
& ﬂ Lasing %1
5 £ E,
= No
2
:
& E - .
Population Population
Rate Equations
dN.
dl‘2 :Rp —7aV,
dN,
dtl =V, =710V 4
At equilibrium: R,
dN. E,
dzzo_)Nz,ss:Rp/721 721
d E
dN :
dl:0_>N1,ss:(721/7/10)N2,ss Yo
t
R _
(N, =), = o7 721):Rp721( _Q_OJ ; >
710721 Do Population

If 70> 7, so that 7;, < 7,,, we will have population inversion.




LASER
OSCILLATION

Laser Oscillation
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The noise radiation originated from the spontaneous emission
exponentially grows and leads to a coherent self-sustained
oscillation inside the cavity if net gain is greater than the net loss.




Steady State Oscillation
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Change in amplitude

Mirror reflectivity due to gain and loss
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Phase accumulation
due to propagation
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Modes
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* f,, are the frequencies of the allowed longitudinal modes.

* The modes are spaced in frequency by ¢/(2nL). If L=1mand n =
1.5, the mode spacing is 100 MHz.
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* More than one mode can exist if linewidth of transitions is greater
than the mode spacing.




STIMULATED TRANSITIONS:
CLASSICAL OSCILLATOR MODEL

Classical Oscillator Model

« Interactions: optical signals <> atoms
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Classical Quantum-mechanical
* Instantaneous displacement : x(¢)

* Restoring force: —Kx(t)
 Externally applied field: E,(¢)




Why Electric Force is Stronger
We will use a plane electro-magnetic wave approximation.

Lorentz Force Equation:
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Damping

*  We have a never-ending oscillation without
an electric field! g
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— We need to add damping. —l ]i E
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Solution with no Excitation
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The damping shifts the oscillation frequency slightly from a,.
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Time Averaged Energy

» If we average over the cycle of oscillation to compute an energy
loss rate of the oscillating atoms:

Energy Loss

1 d(U)
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* Here yis the energy loss rate which we have explicitly broken out
into radiative and non-radiative terms.

* The radiative part is due to spontaneous emission.

* The non-radiative energy loss term is due to inelastic collisions
with other atoms, walls, etc. In solids this loss is due to a coupling
of the energy into the lattice.
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Dipole Moment

* Dipole moment of an individual atom

. (t) = [charge]x [ displacement | = —ex(7)

Microscopic to Macroscopic

* In a collection of atoms, we must sum over all of the dipoles to get a
collective response.

* We have to take an average over dipoles in a volume.

* The volume should be large enough so that it contains a large number of
atoms but small enough so that the atoms see the same optical phase
from and electromagnetic field.
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Coherent Dipole Oscillations

 Single microscopic dielectric oscillator
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Collisions and Dephasing
* When we drive the dipoles with a field they should all be in phase (in
the small volume element).

* What we know is that collisions with other atoms, etc. cause the phase
of the oscillator to be perturbed.

* This is a quantum-mechanical phenomenon, but we can use classical
oscillator ideas with random phases.
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Dephasing

* Time phases are randomized by different scattering processes.

* Polarization becomes much smaller.
* For randomly phased dipole moments — < Ko (t)> =0

Re[u]

Dephasing Time

* Initially, all the dipoles are oscillating in phase
pxo = NO/LIXO

* Att> 0, we have a decreasing number of dipoles that have not
suffered collisions.

p.(O)=N@)p. (1)

* If collisions occur at a random rate of 1/7, collisions per atom per
second. Then the decay of uncollided atoms N(¢) is given by
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Polarization

* Now assume we can align all of the dipoles in our unit volume at
¢t = 0 and let them oscillate (at = 0, let the external field go to
zero). We find that p as a function of time

y: Energy loss rate

1/T,: Dephasing rate




