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Condition for Gain

  sig

1 2( ) ( ) ( )a
dUdU

Kn t N t N t
dt dt

 -  -

• Energy transfer rate to the atoms
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• Energy transfer rate to the signal
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Equilibrium

Boltzmann’s Principle
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We must find some pumping process for gain 
create non-equilibrium condition.
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Pumping

4 level pumping model
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Pumping

4 level pumping model
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Rate Equations
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If 10  21, so that 10  21, we will have population inversion.
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Laser Oscillation

The noise radiation originated from the spontaneous emission 
exponentially grows and leads to a coherent self-sustained 
oscillation inside the cavity if net gain is greater than the net loss.

EaEb

8



5

Steady State Oscillation
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Mirror reflectivity
Change in amplitude 
due to gain and loss

Phase accumulation 
due to propagation
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Oscillation Conditions
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Gain: Frequency:
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Modes

EaEb

2
m

c
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• fm are the frequencies of the allowed longitudinal modes.

• The modes are spaced in frequency by c/(2nL). If L = 1 m and n = 
1.5, the mode spacing is 100 MHz.
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Modes

• More than one mode can exist if linewidth of transitions is greater 
than the mode spacing. 
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Classical Oscillator Model
• Interactions: optical signals  atoms

21N2
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Quantum-mechanical
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Classical

x(t) x(t)
ExCharge -e 

Mass m

Electron

• Instantaneous displacement : x(t)

• Restoring force: -Kx(t)

• Externally applied field: Ex(t)
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Why Electric Force is Stronger
We will use a plane electro-magnetic wave approximation.

Lorentz Force Equation:
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Equation of Motion
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Quantum-mechanics
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Damping
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• We have a never-ending oscillation without 
an electric field! 

 We need to add damping.

 : Damping rate
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Solution with no Excitation

2
2
0

2
2 2 2
0 02

2 2 2 2
0 0

2

2
0

22
0

0, 0

4 4

2 2

2 2

at

j tt

d x dx
x x e a a

dt dt

j
a

a j

x x e e

 

   

     

 


 
--  
 

       

-  - -  -
 

 
 -  - 

 



The damping shifts the oscillation frequency slightly from 0.

A damping harmonic oscillator.

 Consider only positive 
frequency dependency
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Time Averaged Energy

• If we average over the cycle of oscillation to compute an energy 
loss rate of the oscillating atoms:
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Energy Loss

• Here  is the energy loss rate which we have explicitly broken out 
into radiative and non-radiative terms. 

• The radiative part is due to spontaneous emission. 

• The non-radiative energy loss term is due to inelastic collisions 
with other atoms, walls, etc. In solids this loss is due to a coupling 
of the energy into the lattice.

rad nr
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Dipole Moment

   ( ) charge displacement ( )x t ex t    -

• Dipole moment of an individual atom
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• In a collection of atoms, we must sum over all of the dipoles to get a 
collective response.

• We have to take an average over dipoles in a volume.

• The volume should be large enough so that it contains a large number of 
atoms but small enough so that the atoms see the same optical phase 
from and electromagnetic field. 

Microscopic to Macroscopic
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V : Volume

N : Density of dipoles
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Coherent Dipole Oscillations

• Single microscopic dielectric oscillator
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• If the dipoles oscillate in phase
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Collisions and Dephasing

• When we drive the dipoles with a field they should all be in phase (in 
the small volume element).

• What we know is that collisions with other atoms, etc. cause the phase 
of the oscillator to be perturbed.

• This is a quantum-mechanical phenomenon, but we can use classical 
oscillator ideas with random phases.

24
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Dephasing

• Time phases are randomized by different scattering processes.

• Polarization becomes much smaller.

• For randomly phased dipole moments  ,tot ( ) 0x t 
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Dephasing Time

• Initially, all the dipoles are oscillating in phase

0 00x xp N 

• At t > 0, we have a decreasing number of dipoles that have not 
suffered collisions.

( ) ( ) ( )x xp t N t t

• If collisions occur at a random rate of 1/T2 collisions per atom per 
second. Then the decay of uncollided atoms N(t) is given by
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Polarization

• Now assume we can align all of the dipoles in our unit volume at 
t = 0 and let them oscillate (at t = 0, let the external field go to 
zero). We find that p as a function of time

 : Energy loss rate

1/T2: Dephasing rate
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