ELECTROMAGNETIC
WAVES

Electromagnetic Potentials

Electrostatics: VxE=0=FE = —VV

What happens when the fields are time-varying?
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Since the curl of the gradient of a scalar field is zero
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Time-Varying Potentials

Maxwell’s equation > V.D=p, >V -E = Pv
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Electromagnetic potential > E = —yy — 3t

Taking divergence — V-E = —V4V — 3 (V-A) = -
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Time-Varying Potentials
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Vector identity - VXV X A = V(V . K) — V2A
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Lorentz condition for potentials —
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Wave Equations
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Maxwell’s Equations
Free space with charges
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In statics, both time derivatives are unimportant, Maxwell’s Equations split into
decoupled electrostatic and magnetostatic equations.

In Electro-quasistatic (EQS) and magneto-quasitatic systems (MQS), one (but not
both) time derivative becomes important.




Coupling of Electric and Magnetic Fields

Maxwell’s Equations couple the E and H fields:
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Uniform Electromagnetic Waves

E, varies along the z-direction and £ is
Ey constant in the two other directions




Uniform Electromagnetic Waves

E, varies along the z-direction and E, is
Ey constant in the other two directions
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Electromagnetic Waves
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E -field cannot vary in z-direction without a time-varying B-field ...
0 [ =,- 0 0B
_2 / BiA = — 2 B.hirz) = Al "D
ot . ot ot

...and waves must have both electric and magnetic components ! 10




Uniform Electromagnetic Plane Waves
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The y-component of E that varies across space is associated with
the x-component of B that varies in time

Uniform Electromagnetic Plane Waves
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The Wave Equation
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Time-varying E, generates
spatially varying B, ...
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Time-varying B, generates
spatially varying E, ...

The temporal and spatial variations in E, are coupled together to yield ...
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Wave Equation via Differential Equations

T
. |0
Ampere: 3z
H,

~—_—
2 Ey 02 Ey
ot2

92~

Substitution yields the wave equation:
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Uniform Plane Wave Solutions

The 1-D wave equation
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E(z.t) is any function for which the second derivative in space equals
its second derivative in time, times a constant. The solution is therefore
any function with the same dependence on time as on space, e.g.

By = f4(t—2/0) + f-(t + z/c)

The functions f,(z-c?) and f (z+ct) represent uniform waves propagating
in the +z and -z directions respectively.

Speed of Light

The velocity of propagation is determined solely by the dielectric
permittivity and magnetic permeability:
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The functions f, and f’ are determined by the source and the other
boundary conditions.

By = f4(t - 2/e) + [-(t + 2/c)
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