VECTOR ALGEBRA

First Assignment - Reminder

- If you already have not done this!
- Email to anis@eee.buet.ac.bd with
 - Subject: EEE 209
 - Body: "Your Name, Student Number" <email address>
- It will help me to keep you posted on the course updates.

Scalars

A **scalar** quantity has only magnitude
- time, mass, distance, temperature, potential.

Representation: $A, B \rightarrow \text{scalars}$

Global night time air temperature

Vectors

A **vector** quantity has both magnitude and direction – velocity, force, electric field.

Representation: $\vec{A}, \vec{B} \rightarrow \text{ vectors}$

Wind flow chart

Fields

A **field** is a function that specifies a particular quantity everywhere in a region.

Scalar field – 1. temperature distribution in a building 2. electric potential in a region

- Electric potential due to a point charge located at the origin.
- Potential due to a dipole with the positive charge located at y = 1 and the negative charge at y = -1.

Fields

Vector field – 1. gravitational force on a body in space 2. velocity of raindrops in the atmosphere

- Gravitational field
- Electric field for positive charge
- Magnetic field of a bar magnet

Unit Vector

$$\hat{\mathbf{a}}_{A} = \frac{\vec{\mathbf{A}}}{|\vec{\mathbf{A}}|}$$
$$|\hat{\mathbf{a}}_{A}| = 1$$

$$\vec{A} = A\hat{a}_A$$

7

Unit Vectors and Components

In Cartesian coordinates

$$\vec{\mathbf{A}} = (A_x, A_y, A_z)$$
 or $A_x \hat{\mathbf{a}}_x + A_y \hat{\mathbf{a}}_y + A_z \hat{\mathbf{a}}_z$

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}, \ \hat{\mathbf{a}}_A = \frac{A_x \hat{\mathbf{a}}_x + A_y \hat{\mathbf{a}}_y + A_z \hat{\mathbf{a}}_z}{\sqrt{A_x^2 + A_y^2 + A_z^2}}$$

Vector Addition

$$\vec{C} = \vec{A} + \vec{B} = \vec{B} + \vec{A}$$

(a) Parallelogram rule

(b) Head-to-tail rule

9

Equality of Two Vectors

$$\vec{\mathbf{A}} = \hat{\mathbf{a}}_A A = \hat{\mathbf{a}}_x A_x + \hat{\mathbf{a}}_y A_y + \hat{\mathbf{a}}_z A_z$$

$$\vec{\mathbf{B}} = \hat{\mathbf{a}}_B B = \hat{\mathbf{a}}_x B_x + \hat{\mathbf{a}}_y B_y + \hat{\mathbf{a}}_z B_z$$

• Conditions for $\vec{A} = \vec{B}$: A = B

$$\hat{\mathbf{a}}_{A} = \hat{\mathbf{a}}_{B}$$

$$A_x = B_x$$

$$A_y = B_y$$

$$A_z = B_z$$

Vector Decomposition: 2D

Consider a vector: $\vec{A} = (A_x, A_y, 0)$

Components: $A_x = A\cos\theta$, $A_y = A\sin\theta$

Magnitude: $A = \sqrt{A_x^2 + A_y^2}$

Direction:
$$\frac{A_y}{A_x} = \frac{A\sin(\theta)}{A\cos(\theta)} = \tan(\theta)$$

$$\theta = \tan^{-1} \frac{A_y}{A_x}$$

11

Vector Multiplication

Simple Product:

$$\vec{\mathbf{B}} = k\vec{\mathbf{A}}$$

$$= \hat{\mathbf{a}}_{A}kA$$

$$= \hat{\mathbf{a}}_{x}(kA_{x}) + \hat{\mathbf{a}}_{y}(kA_{y}) + \hat{\mathbf{a}}_{z}(kA_{z})$$

Vector Multiplication

Scalar or Dot Product:

$$\vec{A} \cdot \vec{B} = AB \cos \theta_{AB} = C$$
$$\vec{A} \cdot \vec{B} = A(B \cos \theta_{AB})$$
$$\vec{A} \cdot \vec{B} = B(A \cos \theta_{AB})$$

Vector Multiplication

Scalar or Dot Product:

Note that

$$\hat{\mathbf{a}}_x \cdot \hat{\mathbf{a}}_y = \hat{\mathbf{a}}_y \cdot \hat{\mathbf{a}}_z = \hat{\mathbf{a}}_z \cdot \hat{\mathbf{a}}_x = 0$$
$$\hat{\mathbf{a}}_x \cdot \hat{\mathbf{a}}_x = \hat{\mathbf{a}}_y \cdot \hat{\mathbf{a}}_y = \hat{\mathbf{a}}_z \cdot \hat{\mathbf{a}}_z = 1$$

If
$$\vec{A} = (A_x, A_y, A_z)$$
 And $\vec{B} = (B_x, B_y, B_z)$, then

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = (\hat{\mathbf{a}}_x A_x + \hat{\mathbf{a}}_y A_y + \hat{\mathbf{a}}_z A_z) \cdot (\hat{\mathbf{a}}_x B_x + \hat{\mathbf{a}}_y B_y + \hat{\mathbf{a}}_z B_z)$$
$$= A_x B_x + A_y B_y + A_z B_z$$

Vector Multiplication

Vector or Cross Product:

$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = AB \sin \theta_{AB} \hat{\mathbf{a}}_n = \vec{\mathbf{C}}$$

 $\hat{a}_{_{\it n}}\!:$ normal to the plane containing \vec{A} and $\vec{B}_{\rm .}$

Vector Multiplication

Vector or Cross Product:

Direction of \hat{a}_n :

Right-hand rule

Right-handed screw rule

Vector Multiplication

Vector or Cross Product:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \end{vmatrix}$$

$$= (A_{y}B_{z} - A_{z}B_{y})\hat{a}_{x} + (A_{z}B_{x} - A_{x}B_{z})\hat{a}_{y} + (A_{x}B_{y} - A_{y}B_{x})\hat{a}_{z}$$

Vector Multiplication

Vector (or Cross) Product:

It is not commutative $\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}$

It is anti-commutative $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$

It is not associative $\vec{A} \times (\vec{B} \times \vec{C}) \neq (\vec{A} \times \vec{B}) \times \vec{C}$

It is distributive $\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$

 $\vec{A} \times \vec{A} = 0$

 $\hat{\mathbf{a}}_{x} \times \hat{\mathbf{a}}_{y} = \hat{\mathbf{a}}_{z}$

 $\hat{\mathbf{a}}_{v} \times \hat{\mathbf{a}}_{z} = \hat{\mathbf{a}}_{x}$

 $\hat{\mathbf{a}}_z \times \hat{\mathbf{a}}_x = \hat{\mathbf{a}}_y$