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Work to date on self-induced transparency modelocking in quantum cascade lasers �QCLs� has
neglected backward-propagating waves and lumped mirror losses. In this work, we remove these
unrealistic assumptions. The qualitative features of the modelocking are unaffected by this
improvement in the model, but the parameter regime in which stable modelocked pulses may be
found is reduced. This reduction is due to incomplete gain recovery near the edges of the QCL when
pulses pass through after reflecting from the mirrors, coincident with the loss of pulse energy at the
mirrors. Spatial hole burning is observed in parameter regimes in which continuous waves can grow,
but it does not affect the stability of the modelocking. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3206741�

Conventional passive modelocking1,2 is difficult to
achieve in quantum cascade lasers3 due to their narrow line-
widths and fast recovery times. Gain bandwidths in quantum
cascade lasers �QCLs� are narrow because QCLs are inter-
subband transition devices and they have long coherence
times �T2� for semiconductor lasers, on the order of 100–200
fs.4 The coherence time is mainly determined by intrasub-
band carrier-carrier, carrier-LO phonon, and carrier-interface
roughness scattering.5,6 The gain recovery time �T1� in QCLs
is short compared to other semiconductor lasers, on the order
of a picosecond, mainly due to carrier-transport through the
quantum cascade structure by coherent tunneling and inco-
herent scattering mechanisms.7 In conventional passive
modelocking, gain bandwidths that are significantly larger
than the pulse bandwidths are required. Also a saturable gain,
with a recovery time that is long compared to round-trip time
�Trt� is required in order to suppress continuous waves that
may lead to instability due to the Risken–Nummedal–
Graham–Haken effect.8 However, typical gain recovery
times in QCLs are shorter than the round-trip times. Thus,
conventional passive modelocking cannot work in QCLs that
operate in a standard parameter regime. Recently, in Refs. 9
and 10, we showed that the self-induced transparency �SIT�
effect11,12 can be used to modelock QCLs. In order to
achieve modelocking, QCLs should have absorbing periods
interleaved with gain periods, and the absorbing periods
should have a dipole moment �a approximately twice as
large as the dipole moment in the gain periods �g, so that �
pulses in the gain periods are also 2� pulses in the absorbing
periods. We have demonstrated QCL structures13 that satisfy
the requirements of SIT modelocking, and our analytical and
computational studies showed that SIT modelocking for
QCLs is robust.10,14 Previously, we have used the Maxwell–
Bloch equations, applied to a simple two-level system,15,16 to
model both the gain and absorbing periods, in which all spa-
tial inhomogeneity was ignored. In particular, the large
lumped mirror losses were averaged over the propagation.
We also only considered the waves that propagate in a single

direction. A unidirectional propagation model for the evolu-
tion of modelocked pulses is a standard approach in the lit-
erature and has been extensively used.17 However, when con-
tinuous waves experience gain, the forward- and backward-
propagating waves produce standing waves, which can
interfere nonlinearly due to the small values of T1. As a
result, Wang et al.18 and Gordon et al.19 observed spatial hole
burning �SHB� in conventional QCLs with an input current
set above threshold.

In this letter, we will show that backward-propagating
waves do not affect the stability of SIT modelocking. SIT
modelocking is only stable when backward-going continuous
waves are suppressed and hence cannot interact with
forward-going waves. By contrast, the lumped losses at the
mirrors do affect the stability, due to the incomplete gain
recovery that the pulses experience after reflecting from the
mirrors, coincident with their loss of energy at the mirrors.

When the electric field propagates in only one direction,
so that there is no interference, and we ignore spatial inho-
mogeneity, the dynamics in a QCL having absorbing periods
in addition to gain periods can be described by the Maxwell–
Bloch equations in the two-level approximation,9
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where the subscripts g and a in Eqs. �1b� and �1c� represent
gain and absorption, respectively. The independent variables
z and t are length along the light-propagation axis of the
QCL and time. The dependent variables E, �g,a, and �g,a
refer to the envelopes of the electric field, gain polarization,
and gain inversion. The parameters �g0�1.0 and �a0�
−1.0 refer to the equilibrium inversion away from the mod-
elocked pulse. The parameters n and c denote the index of
refraction and the speed of light. The parameters Ng,a�g,a
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denote the effective electron density multiplied by the over-
lap factor. The parameters k, lu, �0, and � denote the wave-
number, the average linear loss including mirror loss, the
vacuum dielectric permittivity, and Planck’s constant.

If counterpropagating waves are taken into account, and
we take into account the lumped mirror losses, then the dy-
namics can be described by
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where the variables, constants, and subscripts are the same as
in Eq. �1� except that �2g,a refers to the inversion grating.
The quantities with + �
� subscripts represent waves travel-
ing in the positive �negative� z-direction. Equations �2c� and
�2d� allow us to take SHB into account. The linear loss lb in
Eq. �2� only includes the loss in the medium. Mirror losses
are taken into account by the boundary conditions. QCLs
have cleaved facets, and the reflection coefficients at the
edges depend on the refractive index difference between the
laser medium and air, i.e., r−=r+= �n−1� / �n+1�, where r−

and r+ are the reflection coefficients at the two interfaces.
The notation closely follows that of Wang et al.18 and Gor-
don et al.,19 with the differences that we have an absorbing
as well as a gain medium.

The gain per unit length �g� from the gain periods of the
QCL and the absorption per unit length �a� from the absorb-
ing periods are given by9
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We present the results in terms of normalized gain �ḡ� and
absorption �ā� coefficients. Gain and absorption coefficients
are normalized by average loss per unit length, which is lu
when we solve Eq. �1� and is lb−ln r− /L−ln r+ /L when we
solve Eq. �2�. Here, we use L to denote the cavity length.

An extensive computational analysis of SIT
modelocking using Eq. �1� has been presented in Ref. 10.
Here, we analyze SIT modelocking by computationally solv-
ing Eq. �2�. We assume that a resonant pulse of hyperbolic-
secant shape and a � pulse in the gain medium are injected
into the QCL structure from an external source. We note that
since continuous waves must be suppressed, this laser will
not self-start. Our computational results show that stable
modelocked solutions exist. An initially broad pulse becomes
narrower and evolves toward a fixed profile intensity after
each round trip. We show the pulse evolution in a 3-mm-long
QCL cavity in Fig. 1. In this example, we set ḡ=3.5 and ā
=2.8. An initial pulse of 100 fs duration �full width at half
maximum/1.763� narrows down to �65 fs. The pulse nar-
rowing when we solve Eq. �2� is less than when we solve

Eq. �1�. With the same parameters and initial conditions as in
Fig. 1, the stable pulse duration is only �43.5 fs, when solv-
ing Eq. �1�.

Figure 2 compares the stability limits of ḡ and ā for SIT
modelocking when we solve Eq. �1� and when we solve Eq.
�2�. The bottom black solid line shows the lower stability
limit in both cases. This boundary is set by the growth of
continuous waves. If the lasers are operated with parameters
set below this boundary, continuous waves are unstable, and
multiple pulses may form due to the Risken–Nummedal–
Graham–Haken effect. The upper lines show the upper sta-
bility limits of ā and are set by the losses. If the laser is
operated with parameters set above these lines, pulses damp.
The upper limiting values of ā are smaller when we solve
Eq. �2� than when we solve Eq. �1� due to the lumped mirror
losses and the delay in the gain recovery when pulses reflect
from the mirrors. Pulses lose a significant amount of energy
��50%� at the QCL mirrors before bouncing back for an-
other passage through the laser. Ideally, the absorption
should decrease and the gain should increase in order for the
pulse to grow to a sustainable intensity. However, just the
opposite occurs. When the pulses bounce back from the cav-
ity edges, the inversion �g,a will not have regained its equi-
librium value before the pulse passes through again. When
QCLs operate below the lower stability limit in ā, continuous
waves are unstable, so that multiple pulses are created and
interfere each other, and we observe SHB in some parameter
regimes. However, if QCLs are operated with ā above the
lower stability limit, continuous wave growth is suppressed
by the absorbing layers, and no SHB is observed.
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FIG. 1. �Color online� Modelocked pulse evolution. We set T1g=T1a�T1,
T2g=T2a�T2, and T1 /T2=10 with T2=100 fs.
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FIG. 2. �Color online� Stability limits of normalized gain �ḡ� vs normalized
absorption �ā� coefficients. We set T1g=T1a�T1, T2g=T2a�T2, and T1 /T2

=10 with T2=100 fs. The upper curves are the upper limiting values of ā.
The bottom black line is the limiting values for continuous wave �cw�
growth for both cases.
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In Fig. 3, we show the effect of the gain recovery time
on the upper stability limit in ā. We set r−=r+=1 so that we
can observe the change in stability that is due only to the
delay in the gain recovery. We assume T1g=T1a�T1 and
T2g=T2a�T2. As expected, the upper limit in ā is lower
when we solve Eq. �2�, than it is when we solve Eq. �1�, even
though there are no mirror losses. When we solve Eq. �1�, the
upper stability limit in ā increases, whereas it decreases
when we solve Eq. �2�. However, when T1 /T2=10 with T2
=100 fs, the gain recovery time T1 is only 1 ps, which is a
typical value obtained in QCLs, and is very short compared
to the cavity round-trip time of �50 ps. Therefore, the popu-
lation inversion can recover its equilibrium value before the
pulse passes through after reflecting from the mirrors, except
in a small region near the edges of the QCL. The instanta-
neous population inversions for both the gain and absorbing
media are drawn in Fig. 4 at different points in the cavity
when the pulse bounces back from the right edge. Figure 4
shows that when T1 /T2 become large, i.e., T1 /T2=100 with
T2=100 fs, the population inversion at the left edge has not
recovered even when the pulse reaches the right edge.

In conclusion, we have shown that SIT modelocking is
stable in QCLs when we take into account realistic, lumped
mirror losses, and backward-propagating waves. However,
the stable parameter regime is reduced. Incomplete gain re-
covery at the QCL edges, when the pulses pass through after
reflecting from the mirrors, along with mirror losses, is
largely responsible for this reduction. Since continuous
waves are suppressed in the stable operating regime, SHB

does not appear in this regime. It does appear when a is
below the stable operating limit.
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FIG. 3. �Color online� Stability limits for different T1 /T2 values with
r−=1 and r+=1. Solid lines show solutions of Eq. �1�, while dashed lines
show solutions of Eq. �2�.

0 1 2 3−1

0

1

z (mm)

In
ve
rs
io
n ∆g

∆a

FIG. 4. �Color online� Population inversion in the cavity. The solid lines are
for T1 /T2=10 and the dashed lines are for T1 /T2=100.
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