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A B S T R A C T

To maintain the safe and reliable operation of lithium-ion batteries and manage their timely replacement,
accurate state of health (SOH) estimation is critically important. This paper presents a novel deep-learning
framework based on multi-loss optimized dual stream fusion of attention integrated multi-Bi-LSTM networks
(multi-ABi-LSTM), for generalized real-time SOH estimation of lithium-ion batteries. Battery sensor data is
first preprocessed utilizing novel energy discrepancy aware variable cycle length synchronization and grid
encoding schemes to achieve generalizability considering battery sets with different discharge profiles and
then passed through two parallel networks: overlapped data splitting (ODS)-based attention integrated multi-Bi-
LSTM network (ODS-multi-ABi-LSTM) and past cycles’ SOHs (PCSs)-based attention integrated multi-Bi-LSTM
(PCS-multi-ABi-LSTM) network. The complementary features extracted from these two networks are effectively
combined by a proposed fusion network to achieve high SOH estimation accuracy. Furthermore, a lithium-ion
battery simulation model is employed for data augmentation during training, enhancing the generalizability
of the proposed data-driven model. The suggested technique outperforms previous methods by a remarkable
margin achieving 0.716% MAPE, 0.005 MAE, 0.653% RMSE, and 0.992 R2 on a combined dataset consisting
of four different battery sets with varying specifications and discharge profiles, indicating its generalization
capability. Appliances using lithium-ion batteries can adopt the proposed SOH prediction framework to predict
battery health conditions in real-time, ensuring operational safety and reliability.
1. Introduction

Lithium-ion batteries have widely been utilized as the primary
energy storage systems for electric vehicles (EVs), smart grids, and
portable electronic devices owing to their long cycle life, high energy
density, low self-discharge rate, and environmental friendliness [1].
However, with repeated charge and discharge cycles, the performance
of the lithium-ion batteries deteriorates due to the degradation of the
electrochemical constituents, resulting in capacity fading and power
decrease [2]. For lithium-ion batteries’ safe and reliable operation, a
battery management system (BMS) plays a vital role in continuously
monitoring battery internal states [3]. The state of health (SOH) metric
serves as a crucial parameter to evaluate the battery health status in
the BMS, which is typically characterized as the current maximum
available capacity to the nominal capacity [4]. When the battery SOH
drops to 75% or 80%, it is considered the end of life (EOL) for the
battery [2]. Accurate real-time estimation of battery SOH is crucial for
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the timely replacement of the batteries before reaching the EOL and to
ensure operational safety [5].

Current methods for SOH estimation can be divided into three
broad categories: direct measurement methods, model-based methods,
and data-driven methods [6]. In direct estimation methods, SOH for
a particular battery cycle is determined by either the decrease in
maximum available capacity or the increase in internal resistance [6].
Maximum available capacity is generally obtained by the ampere-hour
integration, which integrates the battery current over full charging or
discharging time. However, this process requires complete charging and
discharging of the battery, which is not feasible in real-life scenarios
due to diverse customer habits and random operating conditions [7]. To
determine the battery’s internal resistance, specific laboratory equip-
ment is strictly required [8]. Both of these direct measurement methods
are only feasible for offline SOH estimation under test lab environments
and not applicable for online real-time SOH estimation [6].
https://doi.org/10.1016/j.prime.2024.100870
Received 28 July 2024; Received in revised form 31 October 2024; Accepted 1 Dec
vailable online 9 December 2024 
772-6711/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
ember 2024

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/prime
https://www.elsevier.com/locate/prime
https://orcid.org/0009-0008-9692-4748
https://orcid.org/0000-0002-2814-3658
https://orcid.org/0000-0002-4816-2725
mailto:khasan@eee.buet.ac.bd
https://doi.org/10.1016/j.prime.2024.100870
https://doi.org/10.1016/j.prime.2024.100870
http://crossmark.crossref.org/dialog/?doi=10.1016/j.prime.2024.100870&domain=pdf
http://creativecommons.org/licenses/by/4.0/


J. Tasnim et al.

t
c

S
l

t
e

d
a
a
r
t
l

p

m
t
f
s
T
b

l
d
i
m
r
a
f

c
c

t

r
c

r
r
e

e
o
a
p
H
r

i
d

y
e
o
n

C

e-Prime - Advances in Electrical Engineering, Electronics and Energy 11 (2025) 100870 
The model-based approaches for battery degradation estimation
include two types of battery models, the electrochemical model and
he equivalent circuit model. The model parameters are identified
onsidering the aging characteristics and employed to realize battery

health status [6]. The electrochemical models can accurately estimate
OH by describing the internal chemical reaction processes inside the
ithium-ion battery cells [6]. Li et al. [9] proposed a reduced-order

single particle model for predicting capacity fading considering the
solid electrolyte interface (SEI) layer formation and its cracking due to
he volume expansion of the particles in the active materials. Atalay
t al. [10] utilized a pseudo-two-dimensional (P2D) electrochemical

model incorporating multi-layered SEI, lithium-ion plating, and re-
uction of anode porosity to analyze the complex aging mechanism
nd capacity fading. Although these electrochemical models provide
ccurate SOH estimation, the determination of the model parameters
equires solving complex partial differential equations, which is both
ime-consuming and computationally expensive for the BMS, which
imits its practical applications for onboard SOH estimation.

Compared to complex electrochemical models, the equivalent cir-
cuit model (ECM) has much better online capability due to its simplified
circuit architecture with classical electrical components and fewer pa-
rameters, thus simulating dynamic electrical behaviors. After the model
parameters are identified, ECMs are combined with different filtering
algorithms to estimate battery health status [11,12]. Ma et al. [13]
roposed a fractional second-order RC model, the parameters of which

are determined by an adaptive genetic algorithm, and then the un-
scented Kalman filter (UKF) is employed to predict SOH. To capture
the Lithium-ion battery degradation, Amir et al. [14] employed a 2-RC
model considering the effect of both time and temperature on capacity
degradation. Although these ECM models can provide high-end perfor-

ance with simplified structures, specific experimental data capturing
he aging mechanism over the entire lifetime of the battery is required
or model calibration [15]. Furthermore, the model parameters are
usceptible to noise, operating conditions, and environmental changes.
hese factors limit ECM’s generalization capability for diverse sets of
atteries and affect the accuracy of the estimated SOH [11].

In recent years, data-driven approaches for SOH estimation have
gained significant attention from researchers for their excellent self-
learning capability, high adaptability, and real-time applicability with-
out requiring any prior domain knowledge regarding battery aging
or physical models [11,15]. The data-driven approaches derive man-
ual or automated features from battery operational data and map
those features for SOH prediction utilizing machine-learning or deep-
earning algorithms [6,11,16]. The SOH estimation accuracy of these
ata-driven approaches depends on both the selection of appropriate
nput features and the selection of machine learning or deep learning
ethods. These features can be categorized into four types: voltage-

elated features, current-related features, temperature-related features,
nd incremental capacity (IC)-related features. They can be extracted
or the charging or discharging cycles.

Since for lithium-ion batteries, the constant current-constant voltage
(CCCV) charging principle is typically followed, the charging cycle
features are generally extracted from the constant current (CC) and
onstant voltage (CV) phases. The features in the CC phase include CC
harging time [17–20], the slope of the voltage curve at the end of CC

charging [18] and charging time for a predefined voltage range [21].
CV charging time [16,18], CV capacity [16,22], average current in CV
phase [16] and time interval for equal charging current difference in
he CV phase [16] are some of the CV phase-based features used for

battery health indication. The IC curves, derived from partial charging
or discharging voltage and current data, have also frequently been
used in recent research for SOH estimation. IC curve-related features
include the peak and valley of the IC curve [23], area under the IC
curve [24], difference between IC curve values at predefined voltage
ange [25], dynamic voltage warping (DVW) distance with the first
ycle IC curve [26] etc. For mapping these manually designed features
2 
to battery state of health estimation, typical machine learning algo-
ithms, including support vector machine (SVR) [17], gaussian process
egression (GPR) [19], random forest (RF) [27] etc., are utilized. Lin
t al. [17] utilized constant current charging time (CCCT) as input

features and combined it with RF regression method to predict battery
SOH. Liu et al. [16] extracted five features from the CV charging phase,
such as CV charging time, charging capacity, and average current in
the CV phase, and utilized both SVR and long short-term memory
(LSTM) as primary and secondary learners, respectively, to estimate
SOH from the five features. Li et al. [26] proposed the DVW distance
between the IC curves of the current and initial discharging cycle as
a health indicator (HI), enhanced the linear relationship between HI
and battery health status using box-cox transformation, and finally
used linear regression to predict the SOH. Although these manually
xtracted features from voltage, current, or IC curves of the charging
r discharging phase provide highly accurate SOH estimation, they
re subjected to several issues. Features based on the CC charging
hase require a fixed charging starting point to be estimated accurately.
owever, in real-life scenarios, users tend to charge the battery before

eaching full discharge resulting in random starting capacity [11].
Hence, the extracted CC features will not be accurate. CV charging
features can avoid these random starting states but require full charging
to estimate the features accurately, which is often not feasible in prac-
tical applications [11]. On the other hand, standard IC curves derived
from charging/discharging voltage and current data suffer from low
resolution during sharp voltage changes and are vulnerable to noise and
interference [26]. Therefore, an additional smoothing/filtering process
s required before feature extraction increasing the computational bur-
en in real-time applications [11]. Furthermore, these methods based

on manually extracted features lack generalizability for diverse sets
of lithium-ion batteries in different operating conditions and suffer
from feature redundancy, requiring optimization and preprocessing
steps [11].

To overcome the limitations of manual feature extraction, in recent
ears many researchers have adopted deep learning algorithms to
xtract features automatically from the current, voltage, temperature
r IC curve data of the battery charging or discharging cycles. Neural
etwork models such as, LSTM [28], gated recurrent unit (GRU),

Bi-LSTM [29,30], Bi-LSTM-Attention [31] and convolution neural net-
works (CNN) [32] have widely been used for SOH estimation in recent
years. Fan et al. [6] utilized a hybrid neural network combining GRU
and CNN to extract features automatically from battery full charg-
ing voltage, current and temperature curves and predict SOH. Choi
et al. [33] proposed a battery capacity estimation method using FNN,

NN, and LSTM networks with full charging voltage, current and
temperature data as input. However, these methods do not consider
battery real-life use cases where full charging or discharging is not fea-
sible. In this regard, recent research has adopted partial instead of full
charging/discharging data to estimate battery health. Shen et al. [34]
obtained voltage, current and charging capacity data from the par-
tial charging curves and estimated battery SOH by training a deep
convolutional neural network model (DCNN) with ensemble learning
and transfer learning. Qian et al. [32] presented a 1D CNN model to
extract features from partial charging voltage, differential voltage and
current curves to provide capacity degradation information. Utilizing
a simple CNN architecture, Chen et al. [11] obtained health features
from partial CV charging phase current and differential current curves
and estimated battery SOH. These research have preferred charging
profile data for battery health prediction since the charging process
typically follows a preset protocol enabling deep learning models to
extract features and map to SOH easily. However, to obtain the health
status of battery-powered devices during real-time operation, challeng-
ing discharge cycling sensor data carrying high randomness depending
on the owner’s routine needs to be utilized. Bockrath et al. [15]
proposed a data-driven SOH estimation method based on a temporal
convolution neural network with voltage, current and temperature data



J. Tasnim et al.

u

c
p
m
e

f
t
r

a
i

m
h

d

p
c
t
I
v
a
A
e

o
n
r
a

v

s

m
n
(
l
n
c
w
c
w
c
a
c
a

l

l

e-Prime - Advances in Electrical Engineering, Electronics and Energy 11 (2025) 100870 
from different segments of partial discharge profiles. Lu et al. [35]
sed a CNN model to extract features from partial discharging profiles

such as discharging capacity vs. voltage curve, IC curve and capacity
changing curve to predict battery health status.

Several studies utilized LSTM-based networks for their excellent
apability to capture long term temporal features. Wang et al. [36]
roposed an explainability-driven model based on LSTM to guide the
odel using feed-back explanation for the estimation of SOH. Van

t al. [28] implemented an LSTM based network for estimating SOH
and internal resistance based on current, voltage and temperature. Typ-
ical LSTM networks capture features from only one direction. There-
ore, Bi-LSTM networks provide a more robust performance enabling
he capability to capture features from both forward and backward di-
ection [29,30]. Moreover, by incorporating temporal attention mech-

anism Bi-LSTM can focus on specific positions in the sequence that
re more significant than others, resulting an enhanced performance
n SOH estimation [31]. Multiple studies utilized CNN and LSTM com-

bined network to extract both short term and long term temporal
dependencies [37,38]. Khan et al. [39] utilized a CNN-Bi-LSTM hy-
brid network to estimate the lithium-ion battery’s SOH. They imple-

ented Group Learning Algorithm (GLA) to find out the most efficient
yper-parameters of Bi-LSTM network.

While these methods use partial discharge data, they are limited
by using a particular voltage or state of charge (SOC) range of the
discharge cycle. This hinders the real-time continuous SOH estimation
during an ongoing discharge cycle. In this respect, Qin et al. [40] pro-
posed a similarity-analysis-based future data reconstruction method to
provide the battery’s SOH on the fly with partial discharge data. Their
method utilized a temporal-attention-based LSTM model for feature
extraction and mapping them to battery SOH.

Apart from the discussed limitations, the preprocessing scheme of
the state-of-the-art methods lacks generalization to handle data from
iverse sets of batteries with different discharge profiles and provide

accurate SOH estimation. These methods were evaluated utilizing a
articular dataset at a time containing battery cells with similar dis-
harging profiles. Furthermore, recent research has focused more on
he effect of input data (such as voltage, current, temperature, and
C curve) selection on the SOH estimation. Effects of the architectural
ariance, complicacy and loss functions of different deep learning
lgorithms on better SOH estimation accuracy are seldom explored.
dditionally, these methods have not addressed the limited number of
xperimental datasets for training different data-driven models.

In this paper, a generalized multi-objective dual stream fusion
f attention-guided multi-Bi-LSTM (multi-ABi-LSTM) network with a
ovel pre-processing and data augmentation scheme is presented for
eal-time state of health prediction of lithium-ion batteries with high
ccuracy. The main contributions of this work are summarized in the

following:
(i) A novel pre-processing scheme with energy discrepancy aware

ariable cycle length (length of sampled battery data such as V, I,
T) synchronization and grid encoding is proposed. The pre-processing
cheme is inspired by the work of Qin et al. [40] where battery-specific

variable cycle length with the increasing number of cycles was synchro-
nized and grid encoding was proposed to magnify minor discrepancies
over cycles. However, our method of cycle length synchronization and
grid encoding not only synchronizes the varied cycle lengths over
increasing cycles for a particular battery but also focuses on achieving
generalizability for a diverse set of batteries with diverse discharge
profiles, i.e., different discharging currents, operating temperatures,
and rated capacities, and considers the effect of discharge current and
temperature on battery SOH through grid encoding.

(ii) A temporal attention-guided Bi-LSTM network (ABi-LSTM) is
utilized as the base model for feature extraction, which considers the
importance of battery data features in different sampling instances of
the discharging cycle for battery health prediction.
3 
(iii) A novel fusion model, with two parallel multi-ABi-LSTM net-
works trained with global and local loss functions, is proposed to

ap the preprocessed discharge data to battery SOH. The first parallel
etwork is the overlapped data splitting (ODS)-based multi-ABi-LSTM
ODS-multi-ABi-LSTM) network, which extracts features from over-
apped discharge data segments separately with multiple ABi-LSTM
etworks instead of utilizing full discharge data at a time. This fa-
ilitates each ABi-LSTM network in better learning the dependencies
ithin a particular discharge segment. Another network is the past

ycles’ SOHs (PCS)-based multi-ABi-LSTM (PCS-multi-ABi-LSTM) net-
ork where local losses are utilized to predict the SOHs of previous

ycles and estimate the current cycle SOH in a time-series forecasting
pproach. This network is guided by true SOH values of both the
urrent and previous cycles, thus achieving better SOH prediction
ccuracy.

(iv) Data augmentation is employed during training by generating
ithium-ion battery simulation model-based cycling data. This increases

the training dataset’s diversity, improving the proposed data-driven
model’s generalization ability.

(v) The proposed framework is evaluated using four publicly avail-
able datasets and a combined dataset, for the first time to the best of
our knowledge, to investigate its generalization capability for diverse
sets of battery data.

2. Materials and methods

2.1. Datasets

Experiments using four publicly available lithium-ion battery
datasets are used to validate our proposed method for SOH estima-
tion. The specifications of the batteries in each of these datasets and
their charging and discharging criteria are detailed in the following
discussion. Table 1 presents a summary of all the datasets.

2.1.1. NASA dataset
This dataset, hosted by NASA Ames Prognostic Center of Excel-

ence (PCoE) [41], presents data for 34 lithium-ion battery cells with
a capacity of 2 Ah. The batteries were cycled until 12%, 20%, or
30% fading of initial capacity using a custom-built battery tester. The
Cycling consisted of three operational profiles: charging, discharging,
and impedance. For all experiments, charging followed the constant
current-constant voltage (CCCV) principle, where the batteries were
first charged with a constant current of 1.5 A until the battery voltage
reached 4.2 V, and then the voltage remained constant at 4.2 V until
the current dropped to 20 mA. However, different discharging profiles
with different discharging currents and temperatures were applied to
induce more realistic battery degradation. Electrochemical impedance
spectroscopy (EIS) was used to measure impedance, with a frequency
sweep from 0.1 Hz to 5 kHz. According to different discharging profiles,
the 34 battery cells were divided into six groups. The group, consisting
of batteries B0005, B0006, B0007, and B0018, which are the most
widely used for SOH estimation, have been chosen for experimentation
in this work. For these four batteries, charging was carried out with
the CCCV criterion mentioned above, and discharging was carried out
with a constant discharge current of 2 A at room temperature until the
voltage fell below the discharge cut-off voltage, which is 2.7 V, 2.5
V, 2.2 V, and 2.5 V for batteries B0005, B0006, B0007, and B0018,
respectively. These charging and discharging cycling experiments were
continued until the batteries reached 70% of the initial rated capacity
(i.e., from 2 Ahr to 1.4 Ahr), which is the defined EOL for these
batteries.
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Table 1
Specifications of different lithium-ion battery datasets.

Datasets Battery ID Rated Capacity (Ah) Charging Discharging Temperature (◦C)

Constant current (A) Maximum voltage (V) Constant current (A) Cut-off voltage (V)

NASA

B0005

2

1.5 4.2 1C 2.7

24B0006 1.5 4.2 1C 2.5
B0007 1.5 4.2 1C 2.2
B0018 1.5 4.2 1C 2.5

Oxford Cell1-Cell8 0.74 0.74 4.2 1C 2.7 40

MIT

Cell 22

1.1

4.65C (44%)-5C-1C 3.6 4C 2

30

Cell 23 4.65C (69%)-6C-1C 3.6 4C 2
Cell 30 4C (4%)-4.856C-1C 3.6 4C 2
Cell 33 5.2C (50%)-4.25C-1C 3.6 4C 2
Cell 35 5.2C (66%)-3.5C-1C 3.6 4C 2
Cell 39 5.6C (47%)-4C-1C 3.6 4C 2
Cell 42 5.6C (65%)-3C-1C 3.6 4C 2
Cell 47 6C (52%)-3.5C-1C 3.6 4C 2

CALCE

CS2 33

1.1

0.5C 4.2 0.5C 2.7

25CS2 34 0.5C 4.2 0.5C 2.7
CS2 35 0.5C 4.2 1C 2.7
CS2 36 0.5C 4.2 1C 2.7
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2.1.2. Oxford dataset
The Oxford Battery Degradation Dataset, collected by the Howey

esearch Group, University of Oxford, in 2015 [42], contains the
battery aging data of 8 Kokam lithium-ion pouch cells with a capacity
of 0.74 Ah. The cells were cycled to the EOL in a thermal chamber at
40◦Celsius. The degradation process involved a CCCV charging criterion

ith a 2C constant current and a maximum charging voltage of 4.2 V,
ollowed by a drive cycle discharging profile derived from the Artemis
rban profile. Characterization tests were performed every 100 cycles

nvolving a 1C constant current charge with a maximum charging
oltage of 4.2 V and 1C constant current discharge with the discharge
ut-off voltage set at 2.7 V. The recorded time, voltage, current, charge,
nd temperature from these characterization cycles are utilized in this
ork for SOH estimation.

2.1.3. MIT dataset
This dataset from the Massachusetts Institute of Technology and

Stanford University [43] contains battery cycling data for 124 lithium-
ion phosphate (LFP)/graphite cells manufactured by A123 Systems
(APR18650M1 A) with a nominal capacity of 1.1 Ah. The tests were
performed in a forced convection temperature chamber at 30 ◦C under
fast charging conditions. The charging process involved a ‘‘C1(Q1)-
C2’’ policy where the cells were first charged with constant current
C1 until the SOC reached Q1 and further charged to 80% of SOC with
 different constant current C2. Finally, the cells were charged under

a 1C CCCV profile up to 100% of SOC with the maximum charging
oltage set at 3.6 V. All cells were discharged with 4C constant current

until their voltage reached the discharge cut-off at 2 V. Eight cells with
different charging policies are chosen in this work for experimentation,
the details of which are shown in Table 1.

2.1.4. CALCE dataset
The experimental data in this dataset was collected by the CALCE

attery team at the Center for Advanced Life Cycle Engineering
CALCE), University of Maryland [44]. 15 prismatic lithium-cobalt-

oxide (LCO)/graphite cells with a capacity of 1.1 Ah were cycled using
he Arbin Battery Tester at room temperature. The charging procedure
or all cells followed a CCCV protocol where the cells were first charged
ith a 0.5C constant current until the voltage reached the maximum

harging voltage of 4.2 V and after that, the voltage remained constant
ill the current dropped to 0.05 A. The discharging was performed with
 constant current rate of 0.5C or 1C until the terminal voltage reached

the cut-off at 2.7 V. Two battery cells with 0.5C discharge current and
two battery cells with 1C discharge current are selected in our work for
SOH estimation.
 c

4 
2.2. Data augmentation with simulation data

The main objective of this paper is to propose a data-driven model
hat is well-generalized for different lithium-ion batteries with different
pecifications and can provide battery degradation information in real
ime from in-vehicle or device sensor measurements. However, training
 deep learning-based model to learn the battery physics of degradation
roperly requires a large amount of battery data. Publicly available
xperimental data capturing different operating conditions is limited
ue to the requirement of laboratory equipment and extensive data
ollection time. Hence, we have utilized a lithium-ion battery simu-
ation model to generate simulation data, which can reduce the lab
ime needed for data collection. With the publicly available datasets,
hese simulation data are added during training of the proposed data-
riven model to aid in learning the varying degradation patterns of
ithium-ion batteries, with cycling data from diverse operating con-
itions, and increase the model’s generalization capability. Fig. 1(a)

presents the simulation model for charging and discharging cycle data
generation on MATLAB and Simulink software. The main lithium-ion
battery model is represented as the ‘Battery’ block, which models an
equivalent circuit. The circuit parameters are modified according to the
ischarge, temperature, and aging characteristics of a specific battery.

How the equivalent circuit can approximately model a real-life lithium-
ion battery considering the battery’s internal temperature and aging
effects are detailed in [45,46]. The circuit parameters identification
is simple, requiring data from the battery datasheet, the details of
which can be found in the ‘Battery’ block manual of the Simulink
software. In this paper, the simulation data is generated for the Pana-
sonic UR18650E lithium-ion battery with a rated capacity of 2 Ah.
Some of the circuit parameters identified from the battery datasheet
are presented in Table 2. The charging and discharging modes of
the battery are controlled by the ‘Charging/Discharging Controller’
block. For simulation data generation, the battery is fully charged and
discharged with constant currents of 1.5 A and 2 A, respectively, to
make a complete cycle. For each cycle, battery data such as voltage,
current, cell temperature, SOC, and maximum battery capacity for that
ycle are collected. The cycling continued until the battery reached its
OL, i.e., 75% of its initial capacity. Sample voltage and temperature
ata generated from the simulation model are presented in Fig. 1(b) and

(c), respectively. 10 sets of cycling data have been generated slightly
varying the aging characteristics and utilized for data augmentation
during training. These additional data will assist the data-driven model
o more effectively learn the relationship between battery data such as
oltage, current and temperature and corresponding SOH. The lithium-
on battery simulation model on Simulink software and the MATLAB
ode for simultaneous data collection are publicly available at this link.

https://github.com/jarin090/A-generalized-multi-attention-Bi-LSTM-network-for-real-time-SOH-estimation-of-lithium-ion-batteries


J. Tasnim et al. e-Prime - Advances in Electrical Engineering, Electronics and Energy 11 (2025) 100870 
Fig. 1. Data augmentation with simulation data: (a) lithium-ion battery simulation model, sample generated data with the battery simulation model: (b) voltage; (c) temperature.
Table 2
Parameters of the simulation battery model.

Parameters Values

Nominal voltage 3.3 V
Rated capacity 2 Ah
Maximum capacity 2.05 Ah
Cut-off voltage 2.75 V
Fully charged voltage 4.2 V
Discharge current 2 A
Charge current 1.5 A
Internal resistance 0.02 𝛺
Capacity at EOL 1.5 Ah
Initial cell temperature 24 ◦C
Initial SOC 0%

2.3. Data analysis and preprocessing

All the datasets described previously include charging and dis-
charging cycling data, which refers to a specific cycle’s time series
voltage, current, and temperature measurements during the charging
and discharging process. The patterns in these voltage, current, and
temperature profiles change with battery health degradation due to cy-
cling. Some previous works on battery SOH estimation adopted cycling
data during the charging process to extract features for SOH estimation
since the charging follows the battery’s preset CCCV protocols, whereas
5 
discharging can involve randomness involving variation in discharging
currents with usage patterns and variation in ambient temperature.
However, SOH estimation from charging data does not allow real-time
battery health estimation during vehicle or device operation. Hence,
our research investigates the relationship between discharging cycle
data (i.e., voltage (V), current (I), temperature (T)) and health degrada-
tion, considering the challenges in discharge profiles with variations in
discharge current and operating temperature so that battery SOH can
be known in real-time directly from in-vehicle or device sensor data.
The discharging cycle data are processed in two subsequent steps: (a)
energy discrepancy aware variable cycle length synchronization and (b)
grid encoding.

2.3.1. Energy discrepancy aware variable cycle length synchronization
As the time series discharge data were collected with different

sampling rates for different datasets, the data in all the datasets are
resampled with a sampling interval of 10s for generalization purposes.
Fig. 2(a)–(d) and Fig. 2(e)–(h) show the variation in discharge voltage
lengths and decrease in SOH with the increasing number of cycling for
NASA, Oxford, MIT, and CALCE datasets, respectively.

Since the maximum available capacity decreases with cycling, the
discharge time for the cells reduces, and so does the length of the
sampled data. Hence, the variable length over the cycles can play an
important role as a battery health indicator. However, training a data-
driven model with the discharging data profile and corresponding SOH
requires the data length to be the same for all cycles.
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Fig. 2. Discharging voltage profiles with an increasing number of cycles: (a) NASA; (b) Oxford; (c) MIT; (d) CALCE, SOH (%) vs cycle plots: (e) NASA; (f) Oxford; (g) MIT; (h)
CALCE, (i) variation in discharging voltage lengths across different cells with different discharging currents despite the same SOH (here 98%), discharging voltage profiles with
increasing number of cycles after energy discrepancy aware cycle length synchronization: (j) NASA; (k) Oxford; (l) MIT; (m) CALCE.
In addition, although directly relating variable cycle length to bat-
tery SOH can provide useful information for battery health for a single
battery with the same discharging current for all cycles, it can be mis-
leading for two different batteries with different discharging currents or
for a single battery with different discharging currents over the cycles.
Such an example is shown in Fig. 2(i) where the discharging voltage
lengths for the four cells are different despite having the SOH. As shown
in the figure, the four cells are discharged with 4C, 1C, and 0.5C rates,
respectively. A C-rating is defined as the battery charge or discharge
current normalized against the battery-rated capacity. For a battery of
2 Ah, a 1C rate denotes a 2 A discharge current to discharge the entire
battery in 1/C-rate = 1 h. Similarly, for a 2C rate, the discharge current
is 4 A, and the time to full discharge is 1/C-rate = 1∕2 = 0.5 hour. In our
case, the four cells from MIT, NASA, Oxford, and CALCE datasets have
different discharging times owing to different discharging C-rates. This
leads to variable cycle length after sampling despite having the same
state of health. However, if we are to develop a generalized model for
these four cells, the discharge cycle voltage data are required to be of
the same length for the same battery health status.

Therefore, a generalized synchronization approach is required,
which will align the discharge voltage curves over the cycles (as
shown in Fig. 2(a)–(d)) while preserving the indication of different
6 
SOH and ensuring the same cycle length for the same SOH despite
different discharge current rates (see Fig. 2(i)). In this regard, an
energy discrepancy-aware variable cycle length synchronization ap-
proach is proposed in this work. Since the variation in cycle length
also indicates the energy discrepancy across the cycles, this approach
ensures energy conservation before and after synchronization. The
energy before synchronization is calculated as ∑𝑁

𝑘=1 𝐯𝐜(𝑘)𝐢𝐜(𝑘)𝛥𝑡𝑐 where
𝐯𝐜 ∈ 𝑅𝑁 , 𝐢𝐜 ∈ 𝑅𝑁 , 𝛥𝑡𝑐 and 𝑁 denotes the sampled discharging
voltage, current, corresponding sampling time interval and cycle length
before synchronization, for a specific cycle 𝑐. To synchronize the
voltage data, a fixed discharge current rate 𝑖𝑠 and sampling rate 𝛥𝑡𝑠 are
chosen for all cycles so that the modified sampled voltages 𝐯𝐬 ∈ 𝑅𝑁𝑠

after synchronization achieve the same length 𝑁𝑠. In this work, 𝑖𝑠 is
chosen as 1C for a discharging time of 1 h and 𝑡𝑠 as 10 s, which
results in a target length 𝑁𝑠= 1h/10s = 360. The synchronized voltage
𝐯𝐬 ∈ 𝑅360 is required to be determined such that the equation of
energy ∑𝑁

𝑘=1 𝐯𝐜(𝑘)𝐢𝐜(𝑘)𝛥𝑡𝑐 =
∑360

𝑘=1 𝐯𝐬(𝑘)𝑖𝑠𝛥𝑡𝑠 is satisfied. The algorithm
to determine the synchronized voltage data 𝐯𝐬 is detailed in Algorithm
1.

Fig. 2(j)–(m) presents the synchronized discharge voltage profiles
with cycling, which were of variable lengths in Fig. 2(a)–(d), for the
NASA, Oxford, MIT, and CALCE datasets, respectively. From Fig. 2(j)–
(m), it is to be noted that the health degradation over the cycles
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Algorithm 1 Iterative Solution for Variable Cycle Length Synchroniza-
ion.
1: Input: 𝐯𝐜, 𝐢𝐜, 𝛥𝑡𝑐
2: Output: 𝐯𝐬
3: Scale 𝐯𝐜 dividing by the maximum possible voltage at the start of

discharging which is the maximum charging voltage for a specific
battery.
𝐯𝐜𝐬 = 𝐯𝐜∕Maximum charging voltage

4: Calculate the target electrical energy
𝐸𝑇 =

∑𝑁
𝑘=1 𝐯𝐜𝐬(𝑘)𝐢𝐜(𝑘)𝛥𝑡𝑐

5: Interpolate 𝐯𝐜𝐬 to achieve target cycle length 𝑁𝑠 which is 360 in
this work.
𝐯𝐢𝐧𝐭 = 𝑓𝑖𝑛𝑡𝑒𝑟𝑝(𝐯𝐜𝐬), 𝐯𝐢𝐧𝐭 ∈ 𝑅360

6: Define a window, 𝐰 ∈ 𝑅360. For 𝑘 = 1, 2,… , 360
𝑤1(𝑘, 𝑎) = (1 − 𝑎) exp

(

− 𝑘0.9

100𝑎

)

+ 𝑎
𝑤2(𝑘, 𝑎) = −𝑤1(360 − 𝑘, 1 − 𝑎) + 1
𝑤3(𝑘) =

(

1 −
(

|𝑘−180|
180

)4
)

exp
(

−
(

|𝑘−180|
180

)3
)

7: if 𝑎 > 0.9 then
8: 𝑤(𝑘, 𝑎) = 𝑤1(𝑘, 𝑎)( 360−𝑘360 ) +𝑤2(𝑘, 𝑎)( 𝑘

360 ) + 10𝑤3(𝑘)(𝑎 − 0.9)
9: else

10: 𝑤(𝑘, 𝑎) = 𝑤1(𝑘, 𝑎)( 360−𝑘360 ) +𝑤2(𝑘, 𝑎)( 𝑘
360 )

1: end if
2: Define 𝐴 = 1∕𝑣𝑖𝑛𝑡(0)
3: Initialize 𝑎 = 0.001 and 𝑠𝑡𝑒𝑝 = 1
4: Calculate 𝑣𝑠(𝑘) = 𝐴𝑣𝑖𝑛𝑡(𝑘)𝑤(𝑘), 𝑘 = 1, 2,… , 360

15: Define 𝑖𝑠 = 1𝐶 and 𝑡𝑠 = 10
16: Calculate the electrical energy after synchronization, 𝐸𝑆 =

∑𝑁𝑠
𝑘=1 𝑣𝑠(𝑘)𝑖𝑠𝛥𝑡𝑠

17: while True do
18: 𝑎 = 𝑎 + 𝑠𝑡𝑒𝑝
19: Calculate 𝐰 with new 𝑎
20: Calculate 𝐯𝐬 and 𝐸𝑛𝑒𝑤

𝑆 with new 𝐰, with steps 12 and 15
respectively

21: if |𝐸𝑛𝑒𝑤
𝑆 − 𝐸𝑇 | < 0.001 then

22: return 𝐯𝐬
23: end if
24: if 𝐸𝑛𝑒𝑤

𝑆 > 𝐸𝑇 then
25: 𝑎 = 𝑎 − 𝑠𝑡𝑒𝑝
26: 𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝∕2
27: else
28: 𝐸𝑆 = 𝐸𝑛𝑒𝑤

𝑆
29: end if
30: end while

can now be characterized by the variation of voltage values over the
sampling instants (within the synchronized cycle length 360) instead
of variable cycle lengths.

The sampled discharge current 𝐢𝐜 and temperature 𝐭𝐜 are almost
constant over the cycles for all four datasets. Hence, to synchronize the
variable length current and temperature data of increasing cycles to
he target length 𝑁𝑠 = 360, a simple interpolation approach is adopted,

which can be formulated as follows:

𝐢𝐬 = 𝑓𝑖𝑛𝑡𝑒𝑟𝑝(𝐢𝐜) (1)

𝐬 = 𝑓𝑖𝑛𝑡𝑒𝑟𝑝(𝐭𝐜) (2)

where 𝐢𝐬 ∈ 𝑅360 and 𝐭𝐬 ∈ 𝑅360 refers to the synchronized discharge
current and temperature data, respectively.

2.3.2. Grid encoding
The synchronized voltage, current, and temperature data obtained

from the previous step are further encoded to construct the final
preprocessed input vector for SOH estimation. The encoding procedures
for each of these synchronized data are detailed in the following.
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(1) Voltage encoding: Fig. 2(j)–(m) shows the variation of the syn-
chronized discharge voltage curves over the cycles. The discrep-
ancy over the cycles along the voltage axis can act as a potential
battery health indicator. However, the discrepancy from one
cycle to the next is minor. To magnify this minor discrepancy,
the voltage value at each sampling instant is encoded as a 𝐿𝑣
dimensional vector through grid encoding.
Let the range of the synchronized voltages over the cycles be de-
fined as [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]. If 𝐿𝑣 denotes the total number of grids, then
the scope of grid 𝑙𝑣 ∈ [1, 𝐿𝑣] is defined as [𝑣𝑚𝑎𝑥 − (𝑙𝑣 − 1)𝛥, 𝑣𝑚𝑎𝑥 −
𝑙𝑣𝛥], where 𝛥 = 𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛

𝐿𝑣
. For the synchronized voltage data

𝐯𝐬 ∈ 𝑅360 corresponding to a particular cycle, the value of the 𝑘th
sample 𝐯𝐬(𝑘) (𝑘 = 1, 2,… , 360) is encoded with the 𝐿𝑣 grids such
that the value of the grid, within which range 𝐯𝐬(𝑘) falls, is set as
1 and the rest (𝐿𝑣 − 1) grid values are set as 0. With the values
of 𝑣𝑚𝑎𝑥, 𝑣𝑚𝑖𝑛, and 𝐿𝑣 being set at 1, 0, and 100, respectively,
the one-dimensional synchronized voltage data 𝐯𝐬 ∈ 𝑅360 is now
transformed to the two dimensional encoded voltage 𝐕𝐞𝐧𝐜 ∈
𝑅100×360. Fig. 3 illustrates this transformation for a specific cycle
in the NASA B0005 battery cell.
For a battery cell with 𝐶 number of cycles up to the EOL,
the encoded discharged voltages can be represented as ̃𝐕𝑒𝑛𝑐 =
[𝐕𝟏

𝐞𝐧𝐜,𝐕
𝟐
𝐞𝐧𝐜,… ,𝐕𝐂

𝐞𝐧𝐜] where 𝐕𝐜
𝐞𝐧𝐜 ∈ 𝑅100×360 and 𝑐 = 1, 2,… , 𝐶. At

any sampling instant 𝑘, the discrepancy between two cycles 𝑚
and 𝑛 will be measured through two 100 dimensional encoded
vectors, 𝐕𝐦

𝐞𝐧𝐜(𝑘) ∈ 𝑅100×1 and 𝐕𝐧
𝐞𝐧𝐜(𝑘) ∈ 𝑅100×1 instead of two

scalar values. This facilitates enlarging the minor discrepan-
cies between two cycles over all the sampling instances of the
synchronized voltage data and, hence, can better model the
differences in the battery SOH with increased cycling.

(2) Current encoding: As shown in Table 1, the discharge currents
for the four datasets vary in C-rates, which can affect the battery
health degradation. In order to model the effect of the discharge
current rate on the battery state of health, the synchronized
current data 𝐢𝐬 ∈ 𝑅360 is encoded as a 𝐿𝑖 dimensional vector
between the maximum and minimum C-rates of 0 and 20C at
each sampling instant 𝑘 (𝑘 = 1, 2,… , 360).
In this regard, the range for grid encoding is set as [𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥] =
[0, 20𝐶]. With 𝐿𝑖 denoting the total number of grids in this range,
the scope of grid 𝑙𝑖 ∈ [1, 𝐿𝑖] is defined as [𝑖𝑚𝑎𝑥− (𝑙𝑖− 1)𝛥, 𝑖𝑚𝑎𝑥−𝑙𝑖𝛥],
where 𝛥 = 𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛

𝐿𝑖
. Similar to voltage encoding, the current

value at any sampling instant 𝑘 is assigned to one of the grids,
and the value of that grid is set as 1. The value of the rest
𝐿𝑖 − 1 grids are set as 0. With 𝐿𝑖 = 100, the one-dimensional
synchronized current data 𝐢𝐬 ∈ 𝑅360 obtained from the previous
step is transformed to a two-dimensional encoded current 𝐈𝐞𝐧𝐜 ∈
𝑅100×360 for a particular discharge cycle. If there are total 𝐶
number of cycles up to the end of life, the encoded discharge
current data can be represented as ̃𝐈𝑒𝑛𝑐 = [𝐈𝟏𝐞𝐧𝐜, 𝐈

𝟐
𝐞𝐧𝐜,… , 𝐈𝐂𝐞𝐧𝐜]

where 𝐈𝐜𝐞𝐧𝐜 ∈ 𝑅100×360 and 𝑐 = 1, 2,… , 𝐶.
(3) Temperature encoding: Similar to the discharge current, the

operating temperature varies across the four datasets, as shown
in Table 1. The ambient temperature affects the internal heating
of battery cells and thus causes an impact on the battery health
degradation. To relate the cell temperature to the battery SOH,
the synchronized temperature data 𝐭𝐬 ∈ 𝑅360 is encoded as
a 𝐿𝑡 dimensional vector between the maximum and minimum
temperature of 1◦Celsius and 50◦Celsius at each sampling instant
𝑘 (𝑘 = 1, 2,… , 360).
The range for grid encoding is set as [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥] = [1◦𝐶 𝑒𝑙 𝑠𝑖𝑢𝑠,
50◦𝐶 𝑒𝑙 𝑠𝑖𝑢𝑠]. With the total number of grids 𝐿𝑡 = 100, the
one-dimensional synchronized temperature data 𝐭𝐬 ∈ 𝑅360 for
a specific discharge cycle is transformed to a two-dimensional
matrix 𝐓𝐞𝐧𝐜 ∈ 𝑅100×360, following the similar grid encoding
procedure for voltage and current encoding. The encoded tem-

perature data for 𝐶 number of cycles can be represented as a 3D
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Fig. 3. Encoding of voltage data: (a) synchronized one-dimensional discharge voltage data; (b) encoded two-dimensional discharge voltage data.
data matrix, ̃𝐓𝑒𝑛𝑐 = [𝐓𝟏
𝐞𝐧𝐜,𝐓

𝟐
𝐞𝐧𝐜,… ,𝐓𝐂

𝐞𝐧𝐜], where 𝐓𝐜
𝐞𝐧𝐜 ∈ 𝑅100×360

and 𝑐 = 1, 2...𝐶.

The encoded voltage 𝐕𝐜
𝐞𝐧𝐜 ∈ 𝑅100×360, current 𝐈𝐜𝐞𝐧𝐜 ∈ 𝑅100×360 and

temperature data 𝐓𝐜
𝐞𝐧𝐜 ∈ 𝑅100×360 are concatenated to obtain the final

2D preprocessed matrix 𝐗𝐜
𝐞𝐧𝐜 ∈ 𝑅300×360 for a particular cycle 𝑐. This

2D matrix will serve as an input sample to our proposed model for SOH
estimation. The corresponding label is the SOH for that particular cycle
𝑐, calculated as in the following:

𝑆 𝑂 𝐻𝑐 = 𝑀 𝐴𝐶𝑐

𝑅𝑎𝑡𝑒𝑑 𝐶 𝑎𝑝𝑎𝑐 𝑖𝑡𝑦 (3)

where 𝑀 𝐴𝐶𝑐 refers to the maximum available capacity for the partic-
ular cycle 𝑐.

2.4. Proposed network architecture

This work proposes a fusion model with two parallel multi-ABi-
LSTM networks, trained with multiple loss functions, to map the input
feature matrices obtained after data preprocessing to their correspond-
ing SOHs. The proposed framework for SOH estimation is illustrated in
Fig. 4. For a specific cycle 𝑐, the 2D input feature matrix 𝐗𝐜

𝐞𝐧𝐜 ∈ 𝑅300×360

pass through two parallel networks, namely overlapped data splitting
based multi-ABi-LSTM (ODS-multi-ABi-LSTM) network, and past cycles’
SOHs based multi-ABi-LSTM (PCS-multi-ABi-LSTM) network. The two
feature vectors obtained from two parallel networks enter into a fusion
network, which outputs the final predicted SOH. The architectures of
the parallel networks and the feature fusion network are detailed in the
following subsections.

2.4.1. Overlapped data splitting based multi-ABi-LSTM networks
The appropriate modeling of multivariate time-series data is crucial

for improving the prediction accuracy of SOH. Traditional time series
models, e.g. ARIMA [47], only capture linear data relationships, leading
to unsatisfactory predictions for nonlinear problems. Shallow machine
learning models have simple structures, poor generalization, and tend
to fall into local optima. Recurrent neural networks (RNN) typically
performs well to capture features from time series data compared to
other methods. The basic RNN is a type of artificial neural network with
feedback connections that can effectively model time-series data by
correlating the sequential data points [48]. However, RNN suffers from
vanishing/exploding gradient problems in sequential data with long-
term dependencies. The LSTM network was designed to improve RNN
with additional memory cells and gating mechanisms that can capture
the long-term dependencies in time-series data [49]. Although LSTM
eliminates the problem of vanishing gradients in RNN and handles
long-term dependencies, its accuracy is limited to processing the input
8 
sequence data in one direction, i.e., from the past to the present, thus
capturing only the preceding context.

To address this issue, the Bi-LSTM processes information in both
forward and backward directions, considering both past and future
contexts [50]. This bidirectional approach enables the model to cap-
ture dependencies more effectively than traditional CNNs, RNNs, and
LSTMs, leading to improved prediction accuracy. Additionally, its flex-
ible architecture allows for customization with added layers like con-
volutional or attention layers, enhancing performance and providing a
comprehensive view of sequence trends through concatenated hidden
layers in both directions [39,51]. It also exhibits high robustness in
time-series data modeling, effectively capturing long-term dependen-
cies [47]. The use of dropout prevents overfitting, leading to improved
generalization of the model. Consistently, Bi-LSTM outperforms LSTMs
and CNNs in prediction tasks, inspiring the selection of this model for
SOH estimation in our work.

As shown in Fig. 5(b), the Bi-LSTM comprises two separate LSTM
cells with their own set of parameters for processing the input in
forward and backward directions. In the forward processing, the in-
formation from the previous time step is considered, whereas, in the
reverse processing, the information from the future time step is consid-
ered. The forward and reverse hidden states at each time step in the
sequence are concatenated to get the final hidden states. Therefore,
to establish a Bi-LSTM network, the processing of an LSTM cell is
explained first.

As shown in Fig. 5(c), at any time step, the LSTM cell has three
inputs: input for the current time step 𝐱𝑡 ∈ 𝑅𝑑𝑥×1, hidden state from
the previous time step 𝐡𝑡−1 ∈ 𝑅𝑑ℎ×1 acting as a short term memory
and cell state from the previous time step 𝐜𝑡−1 ∈ 𝑅𝑑𝑐×1 acting as a long
term memory. The recent past information, i.e., the short-term memory
𝐡𝑡−1 and current time step input 𝐱𝑡 are combined in a controllable
way through the gating mechanism to update the long-term memory,
i.e., cell state from 𝐜𝑡−1 to 𝐜𝑡. The new cell state 𝐜𝑡 is used in turn to
update the hidden state from 𝐡𝑡−1 to 𝐡𝑡. The hidden state 𝐡𝑡 is also the
output of the LSTM at time step 𝑡 and it is utilized for performing a
specific task.

The information flow through the LSTM cell is controlled by three
gates: the forget gate, the input gate, and the output gate. The forget
gate 𝐟𝑡 determines which information in the cell state vector from the
previous time step should be kept and which should be forgotten. It is
calculated as

𝐟𝑡 = 𝜎
(

𝐖𝑥𝑓 𝐱𝑡 +𝐖ℎ𝑓𝐡𝑡−1 + 𝐛𝑓
)

(4)

where 𝐖𝑥𝑓 ∈ 𝑅𝑑𝑐×𝑑𝑥 , 𝐖ℎ𝑓 ∈ 𝑅𝑑𝑐×𝑑ℎ , 𝐛𝑓 ∈ 𝑅𝑑𝑐×1, and 𝐟𝑡 ∈ 𝑅𝑑𝑐×1. With
the sigmoid activation, the value of 𝐟 is between 0 and 1, and will be
𝑡
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Fig. 4. Schematic for the proposed deep learning framework for SOH estimation.
elementwise multiplied with the previous cell state vector 𝐜𝑡−1. Hence,
it acts as a selector vector such that the position where 𝐟𝑡 = 0, the cell
state information is completely forgotten, and the position where 𝐟𝑡 = 1,
the cell state information remains completely unchanged.

After removing the irrelevant past information from the cell state,
new information can be added to the cell state through the input gate.
The input gate 𝐢𝑡 and candidate vector 𝐜̃𝑡 are calculated as follows:

𝐢𝑡 = 𝜎
(

𝐖𝑥𝑖𝐱𝑡 +𝐖ℎ𝑖𝐡𝑡−1 + 𝐛𝑖
)

(5)

𝐜̃𝑡 = t anh (𝐖𝑥𝑐𝐱𝑡 +𝐖ℎ𝑐𝐡𝑡−1 + 𝐛𝑐
)

(6)

where 𝐖𝑥𝑖 ∈ 𝑅𝑑𝑐×𝑑𝑥 , 𝐖ℎ𝑖 ∈ 𝑅𝑑𝑐×𝑑ℎ , 𝐛𝑖 ∈ 𝑅𝑑𝑐×1, 𝐢𝑡 ∈ 𝑅𝑑𝑐×1, 𝐖𝑥𝑐 ∈
𝑅𝑑𝑐×𝑑𝑥 , 𝐖ℎ𝑐 ∈ 𝑅𝑑𝑐×𝑑ℎ , 𝐛𝑐 ∈ 𝑅𝑑𝑐×1, and 𝐜̃𝑡 ∈ 𝑅𝑑𝑐×1. The candidate
vector 𝐜̃𝑡 implies the information that is a candidate to be added to the
cell state. Since 𝐜̃𝑡 will be element-wise multiplied with 𝐢𝑡, the input
gate ranging from 0 to 1 acts as a selector vector for the candidate
information. In addition, the t anh activation limits 𝐜̃𝑡 between −1 and
1 so that with positive and negative values, the new information can
be either added or subtracted. Finally, the updated cell state 𝐜𝑡 for
the current time step 𝑡 is calculated by combining the past and new
information passed through the forget gate and input gate as

𝐜𝑡 = 𝐟𝑡 ⊙ 𝐜𝑡−1 + 𝐢𝑡 ⊙ 𝐜̃𝑡 (7)

where ⊙ denotes element-wise multiplication. The current cell state 𝐜𝑡
filtered through an output gate 𝐨𝑡 provides the hidden state or output
𝐜𝑡 at current time step 𝑡. The process can be described as

𝐨𝑡 = 𝜎
(

𝐖𝑥𝑜𝐱𝑡 +𝐖ℎ𝑜𝐡𝑡−1 + 𝐛𝑜
)

(8)

𝐡𝑡 = 𝐨𝑡 ⊙ t anh (𝐜𝑡
)

(9)

where 𝐖𝑥𝑜 ∈ 𝑅𝑑𝑐×𝑑𝑥 , 𝐖ℎ𝑜 ∈ 𝑅𝑑𝑐×𝑑ℎ , 𝐛𝑜 ∈ 𝑅𝑑𝑐×1, and 𝐨𝑡 ∈ 𝑅𝑑𝑐×1. The
sigmoid-activated values of 𝐨𝑡 between 0 and 1 select the parts of cell
state 𝐜𝑡 that we want to output. The cell state vector is passed through a
t anh activation before elementwise multiplication with 𝐨𝑡. This ensures
that the values of 𝐡𝑡 are between −1 and 1 and helps to control the
network’s stability over time.

In the forward processing, the information from the previous time
step is considered, whereas, in the reverse processing, the information
from the future time step is considered. The forward and reverse hidden
states at each time step in the sequence are concatenated to get the final
hidden states. The procedure can be expressed as follows:

𝐡+𝑡 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗L STM (

𝐡𝑡−1, 𝐱𝑡, 𝐜𝑡−1
)

(10)

𝐡−𝑡 = ⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖L STM (

𝐡𝑡+1, 𝐱𝑡, 𝐜𝑡+1
)

(11)

𝐡𝑐𝑡 =
[

𝐡+𝑡 ,𝐡
−
𝑡
]

(12)

where 𝐡+𝑡 ∈ 𝑅𝑑ℎ×1, 𝐡−𝑡 ∈ 𝑅𝑑ℎ×1, and 𝐡𝑐𝑡 ∈ 𝑅2𝑑ℎ×1 refer to the
forward, backward and the concatenated hidden states at time step 𝑡,
9 
respectively. For a total 𝑇 number of time steps (𝑡 = 1, 2,… , 𝑇 ), the
hidden states can be represented as

𝐇̃𝑐 = [𝐡𝑐1,𝐡𝑐2,… ,𝐡𝑐𝑇 ] (13)

where 𝐇̃𝑐 ∈ 𝑅2𝑑ℎ×𝑇 .
The significance of features at various locations in the output of Bi-

LSTM (𝐇̃𝑐) is not the same. The Attention Mechanism (AM) addresses
this by assigning weights, distinguishing the importance of different
positions in the sequence, similar to how the human brain focuses on
specific areas. During model training, it learns and integrates these
attention levels, enhancing model accuracy. This optimal weighting of
features at different sequence locations improves the model’s ability
to predict from complex input data patterns. For our specific task of
SOH estimation using Bi-LSTM, the hidden state information at each
time step of the battery health data may not be equally important. To
dynamically calculate the importance of each time step, a temporal
attention module is proposed in this paper. In general, the inclusion
of an attention layer at the output of Bi-LSTM layer (see Fig. 5(b))
increases the model’s performance [52]. The attention module in our
work, takes the 2D matrix 𝐇̃𝑐 as input and provides an attention score
for the hidden states at each time step. The attention score is calculated
as

𝜶 = Sof t max
(

t anh (𝐖ℎ𝐇̃𝑐 + 𝐛ℎ
))

(14)

where 𝐖ℎ ∈ 𝑅1×2𝑑ℎ , 𝐛ℎ ∈ 𝑅1×𝑇 , and 𝜶 ∈ 𝑅1×𝑇 . The final hidden state
is obtained by a weighted sum of the hidden states at each time step,
where the weight corresponds to their attention score, followed by a
ReLU activation layer. It can be expressed as

𝐡𝑎𝐵 = 𝑅𝑒𝐿𝑈

( 𝑇
∑

𝑡=1
𝛼𝑡𝐡𝑐𝑡

)

(15)

where 𝐡𝑎𝐵 ∈ 𝑅2𝑑ℎ×1, 𝛼𝑡 ∈ 𝑅1, and 𝐡𝑐𝑡 ∈ 𝑅2𝑑ℎ×1. 𝐡𝑎𝐵 is considered as the
output from the ABi-LSTM module.

As shown in Fig. 5(a), the ODS-multi-ABi-LSTM network takes the
encoded data matrix 𝐗𝐜

𝐞𝐧𝐜 ∈ 𝑅300×360 as input. The data is then split
into overlapping segments across the time dimension, i.e., along the
dimension of synchronized cycle length, which is 360 in our case. Let
the segment length be 𝐿, and the overlap between two segments is 𝑂 𝐿
such that 𝑂 ∈ [0, 1], then the offset 𝐷 is defined as 𝐿 − 𝑂 𝐿. If there
are total 𝑀 no of. overlapped segments, then the equation for the 𝑚th
segment (𝑚 = 0, 1,… , 𝑀 − 1) can be expressed as

𝐗𝐜
𝐞𝐧𝐜[𝑚] = 𝐗𝐜

𝐞𝐧𝐜[𝐷 𝑚 ∶ 𝐷 𝑚 + 𝐿, ∶] (16)

where 𝐗𝐜
𝐞𝐧𝐜[𝐦] ∈ 𝑅300×𝐿. In our paper, the values of 𝐿, 𝑂, and 𝑀 are

chosen as 288, 0.75, and 2, respectively. The offset 𝐷 is calculated as,
𝐿 − 𝑂 𝐿 = 288 − 0.75 × 288 = 72. With the value of D, the 𝑚th segment
(𝑚 = 0, 1) data is obtained using Eq. (16).
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Fig. 5. (a) Architecture of the ODS-multi-ABi-LSTM network; (b) architecture of the ABi-LSTM network; (c) the structure of an LSTM cell; (d) architecture of the temporal attention
module.
Each of the 𝑀 data segments passes through separate ABi-LSTM
modules to obtain 𝑀 no of hidden state features. For the 𝑚th data
segment, the input to the ABi-LSTM is 𝐗𝐜

𝐞𝐧𝐜[𝐦] ∈ 𝑅300×𝐿. If the input
is unfolded in time steps, then in Fig. 5(b) showing the architecture of
ABi-LSTM, the total number of time steps, 𝑇 = 𝐿 and the input at each
time step is 𝐱𝑡 = 𝐱𝑐𝑒𝑛𝑐 [𝑚] ∈ 𝑅300×1. Following Eqs. (10) to (15), the final
hidden state output 𝐡𝑚𝑎𝐵 for the 𝑚th segment obtained as

( )
𝐡𝑚𝑎𝐵 = 𝑓𝑚
𝐴𝐵 𝑖−𝐿𝑆 𝑇 𝑀 𝐗𝐜

𝐞𝐧𝐜[𝐦] , 𝑚 = 1, 2,… , 𝑀 (17)

10 
where 𝐡𝑚𝑎𝐵 ∈ 𝑅2𝑑ℎ×1 and 𝑓𝑚
𝐴𝐵 𝑖−𝐿𝑆 𝑇 𝑀 refer to the 𝑚th ABi-LSTM

network.
The 𝑀 hidden states obtained for 𝑀 overlapped data segments

are concatenated to form a 2D matrix 𝐇̃𝑎𝐵 ∈ 𝑅2𝑑ℎ×𝑀 . The combined
matrix 𝐇̃𝑎𝐵 serves as an input to another ABi-LSTM network such that
the total number of time steps, 𝑇 = 𝑀 and the input at the 𝑡th time
step, 𝐱𝑡 = 𝐡𝑡𝑎𝐵 ∈ 𝑅2𝑑ℎ×1 (𝑡 = 1, 2,… .𝑀). Following the Eqs. (10) to
(15), the final hidden state output can be obtained. The process can be
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formulated as

𝐡1𝑝𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 = 𝑓𝐴𝐵 𝑖−𝐿𝑆 𝑇 𝑀
(

𝐇̃𝑎𝐵
)

(18)

where 𝐡1𝑝𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 ∈ 𝑅2𝑑ℎ×1 refers to the output of the ABi-LSTM network
𝑓𝐴𝐵 𝑖−𝐿𝑆 𝑇 𝑀 and also the final output feature from the first parallel
network in Fig. 5(a).

Instead of a single ABi-LSTM with full data input here, we have
adopted an ODS-multi-ABi-LSTM network. The main motivation behind
this is that each of the parallel ABi-LSTM modules in Fig. 5(a) is
equired to focus only on a particular part of the sequential data, which
akes it easier for the network to effectively learn the dependencies
ithin that sequence compared to processing the whole data sequence
t a time. In addition, because of the overlapping of data segments,
here is a pseudo increase of data points which further improves the

model’s performance.

2.4.2. Past cycles’ SOHs based multi-ABi-LSTM networks
The battery SOH for a particular cycle 𝑐 can be predicted from the

SOHs of the previous 𝑃 number of cycles using a time series forecasting
approach [33]. However, actual SOHs for each of the battery cycles up
to the EOL are only available in the training data through experimental

easurements. During real-time testing of 𝑐th battery cycle, true SOHs
f 𝑃 previous cycles cannot be obtained. However, since the SOHs of

a small number of consecutive cycles are quite close to each other,
e try to predict the SOHs of the 𝑃 number of past cycles, i.e., cycle

(𝑐 − 𝑃 ) to cycle (𝑐 − 1) with the real-time sensor measurements data of
he present cycle 𝑐 utilizing a local loss based approach. The predicted
OHs are then utilized to forecast the SOH for cycle 𝑐. As shown in

Fig. 6(a), the past cycles’ SOHs based multi-ABi-LSTM network takes
the preprocessed 2D input data matrix 𝐗𝐜

𝐞𝐧𝐜 ∈ 𝑅300×360 for cycle 𝑐 as
input. The data is then passed through 𝑃 number of parallel ABi-LSTM
networks, each followed by two ReLU-activated fully connected layers,
o predict the SOH of the 𝑝th previous cycle where 𝑝 = 1, 2,… , 𝑃 . First,
he hidden state output for the 𝑝th ABi-LSTM module, 𝐡𝑝𝑎𝐵 ∈ 𝑅2𝑑ℎ×1, is

obtained using Eqs. (10) to (15). The predicted SOH for the 𝑝th previous
ycle 𝑐 − 𝑝 is then calculated as

𝐡𝑝𝑎𝐵 = 𝑓 𝑝
𝐴𝐵 𝑖−𝐿𝑆 𝑇 𝑀

(

𝐗𝐜
𝐞𝐧𝐜

)

(19)

𝑆 𝑂 𝐻𝑐−𝑝 = 𝑅𝑒𝐿𝑈
(

𝐖𝑝
2
(

𝑅𝑒𝐿𝑈
(

𝐖𝑝
1𝐡

𝑝
𝑎𝐵
)))

(20)

where 𝑓 𝑝
𝐴𝐵 𝑖−𝐿𝑆 𝑇 𝑀 refers to the 𝑝th ABi-LSTM network, 𝐖𝑝

1 ∈ 𝑅256×2𝑑ℎ ,
𝐖𝑝

2 ∈ 𝑅1×256, 𝑆 𝑂 𝐻𝑐−𝑝 ∈ 𝑅1, and 𝑝 = 1, 2,… , 𝑃 . A local mean squared
error (MSE) loss guides each of the 𝑃 parallel networks, calculated
between the predicted 𝑆 𝑂 𝐻𝑐−𝑝 and actual 𝑆 𝑂 𝐻𝑐−𝑝 for the cycle 𝑐 − 𝑝,
during training. It is defined as

𝑀 𝑆 𝐸 (𝑝) =
(

𝑆 𝑂 𝐻𝑐−𝑝 − 𝑆 𝑂 𝐻𝑐−𝑝

)2
(21)

where 𝑝 = 1, 2,… , 𝑃 . With backpropagation from these local losses
uring training, the parallel networks learn to map the input data
atrix for 𝑐th cycle to the past cycle SOHs, which eliminates the

necessity of actual past cycle SOHs during testing.
For forecasting the SOH for cycle 𝑐 from the predicted SOHs of

previous 𝑃 cycles, they are first concatenated to form a 2D matrix
𝐒𝐎𝐇 ∈ 𝑅1×𝑃 as

𝐎̂𝐇 =
[

𝑆 𝑂 𝐻𝑐−𝑃 …𝑆 𝑂 𝐻𝑐−2 𝑆 𝑂 𝐻𝑐−1

]

(22)

This 2D matrix 𝐒𝐎𝐇 serves as an input to an ABi-LSTM network in
Fig. 5(b) such that, the total number of time steps, 𝑇 = 𝑃 and the input
t the 𝑡th time step, 𝐱𝑡 = 𝑆 𝑂 𝐻𝑐−𝑃 ∈ 𝑅1×1 (𝑡 = 1, 2,… , 𝑃 ). Following
qs. (10) to (15), the output of the ABi-LSTM network can be obtained.

The process can be formulated as

𝐡′𝑎𝐵 = 𝑓 ′
𝐴𝐵 𝑖−𝐿𝑆 𝑇 𝑀

(

𝐒𝐎𝐇
)

(23)

where 𝐡′𝑎𝐵 ∈ 𝑅2𝑑ℎ2×1 and 𝑑ℎ2 refer to the output and the hidden state
imension of the ABi-LSTM network 𝑓 ′ , respectively. Since 𝐡′
𝐴𝐵 𝑖−𝐿𝑆 𝑇 𝑀 𝑎𝐵

11 
is the final output feature from the second parallel network in Fig. 6(a),
t can be represented as

𝐡𝟐𝐩𝐚𝐫 𝐚𝐥𝐥𝐞𝐥 = 𝐡′𝐚𝐁 (24)

where 𝐡2𝑝𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 ∈ 𝑅2𝑑ℎ2×1.

2.4.3. Fusion network
The feature vectors 𝐡1𝑝𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 ∈ 𝑅2𝑑ℎ×1 and 𝐡2𝑝𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 ∈ 𝑅2𝑑ℎ2×1 obtained

from the two parallel networks, respectively, are combined using a
fusion network to output the final predicted SOH for 𝑐th cycle. Fig. 6(b)
shows the schematic architecture of the fusion network where the two
arallel feature vectors are first concatenated and thereafter passed
hrough two fully connected layers to obtain the final SOH prediction.

The process can be formulated as

𝐡𝑐𝑝𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 = [𝐡1𝑝𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 ,𝐡2𝑝𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙] (25)

𝑆 𝑂 𝐻𝑐 = 𝐖𝑐
2

(

𝑅𝑒𝐿𝑈
(

𝐖𝑐
1𝐡

𝑐
𝑝𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙

))

(26)

where ℎ𝑐𝑝𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 ∈ 𝑅2(𝑑ℎ+2𝑑ℎ2)×1, 𝐖𝑐
1 ∈ 𝑅256×2(𝑑ℎ+𝑑ℎ2), 𝐖𝑐

2 ∈ 𝑅1×256, and
𝑆 𝑂 𝐻𝑐 ∈ 𝑅1 refer to the concatenated feature vector, weight matrices
for the first and second fully connected layers, and the final predicted
SOH for cycle 𝑐, respectively.

2.4.4. Real-time SOH estimation with future data reconstruction
In most recent research [6,15,33,40] and our proposed framework

for SOH estimation, the input to the feature extractor network requires
full charging or discharging cycle data. Therefore, for real-time pre-
diction of the SOH at each sampling time instant during an ongoing
discharging cycle, future data beyond the sampling instant to the end
of that cycle is required to obtain a complete discharge cycle data. With
the full cycle discharge data, the SOH then can be estimated for that
particular sampling time utilizing the proposed trained network. For
future data reconstruction, we followed the procedure of Qin et al. [40],
the steps of which are described in the following for an ongoing
discharging test cycle.

Let, for a test cycle, the input raw sensor voltage, current and
temperature data are defined as 𝑣𝑡𝑒𝑠𝑡(𝑘), 𝑖𝑡𝑒𝑠𝑡(𝑘), and 𝑡𝑡𝑒𝑠𝑡(𝑘), respec-
ively. For any sampling instant m during this test cycle, only partial

discharging data 𝐯𝑡𝑒𝑠𝑡(1 ∶ 𝑚), 𝐢𝑡𝑒𝑠𝑡(1 ∶ 𝑚) and 𝐭𝑡𝑒𝑠𝑡(1 ∶ 𝑚) will be
vailable. To obtain a full discharge cycle, unknown future data is
equired to be estimated which can be supplemented from the battery
ata utilized during the training by similarity checking. Let there be 𝑁
umber of cycles in the training dataset from a diverse set of batteries
nd for a particular training cycle 𝑐, the available full cycle voltage,
urrent, and temperature data be defined as 𝐯𝑐 (𝑘), 𝐢𝑐 (𝑘) and 𝐭𝑐 (𝑘). The
uture data reconstruction at time step 𝑚 for the test cycle is done
hrough similarity evaluation with each of the training cycles up to this
ime instant. This similarity is measured by computing the Euclidean
istances as defined in the following:

𝑑𝑣𝑐 (𝑚) =
√

√

√

√

𝑚
∑

𝑘=1

(

𝐯𝑡𝑒𝑠𝑡(𝑘) − 𝐯𝑐 (𝑘)
)2 (27)

𝑖
𝑐 (𝑚) =

√

√

√

√

𝑚
∑

𝑘=1

(

𝐢𝑡𝑒𝑠𝑡(𝑘) − 𝐢𝑐 (𝑘)
)2 (28)

𝑑𝑡𝑐 (𝑚) =
√

√

√

√

𝑚
∑

𝑘=1

(

𝐭𝑡𝑒𝑠𝑡(𝑘) − 𝐭𝑐 (𝑘)
)2 (29)

𝑑𝑐 (𝑚) = 𝑑𝑣𝑐 (𝑚) + 𝑑𝑖𝑐 (𝑚) + 𝑑𝑡𝑐 (𝑚) (30)

For 𝑁 sets of training cycles, 𝑁 set of distances will be calculated,
𝐷 = [𝑑1(𝑚), 𝑑2(𝑚),… , 𝑑𝑐 (𝑚),… , 𝑑𝑁 (𝑚)]. The training cycle with the least
distance, i.e., maximum similarity is chosen to construct the future data
for the test cycle at sampling instant 𝑚. Let, the chosen training cycle
be labeled as 𝑗 with full cycle length 𝐾 . Then the reconstructed full
𝑗
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Fig. 6. (a) Architecture of the PCS-multi-ABi-LSTM network; (b) architecture of the fusion network.
cycle voltage, current, and temperature data for the test cycle at time
step 𝑚 is calculated as

𝐯𝑚𝑡𝑒𝑠𝑡 = [𝐯𝑡𝑒𝑠𝑡(1 ∶ 𝑚), 𝐯𝑗 (𝑚 + 1 ∶ 𝐾𝑗 )] (31)

𝐢𝑚𝑡𝑒𝑠𝑡 = [𝐢𝑡𝑒𝑠𝑡(1 ∶ 𝑚), 𝐢𝑗 (𝑚 + 1 ∶ 𝐾𝑗 )] (32)

𝐭𝑚𝑡𝑒𝑠𝑡 = [𝐭𝑡𝑒𝑠𝑡(1 ∶ 𝑚), 𝐭𝑗 (𝑚 + 1 ∶ 𝐾𝑗 )] (33)

The reconstructed full cycle data 𝐯𝑚𝑡𝑒𝑠𝑡, 𝐢𝑚𝑡𝑒𝑠𝑡, and 𝐭𝑚𝑡𝑒𝑠𝑡 at sampling
instant 𝑚, is preprocessed utilizing the energy discrepancy aware vari-
able cycle length synchronization and grid encoding approach (see
Fig. 4). The preprocessed data is fed to the offline well-trained proposed
network to obtain the estimated SOH at time instant 𝑚, making the
12 
proposed algorithm suitable for real-time in vehicle or device SOH
estimation.

2.5. Loss functions

To determine the SOH of a particular cycle, the existing deep
learning-based state-of-the-art methods [6,11,15,32–35,40] utilized only
a global loss based on the true SOH value of that cycle to train their
network. However, in our proposed framework, instead of defining
a single loss function based on the current cycle SOH, additional
local losses are adopted to guide the overall feature extraction process
for SOH estimation. These local losses are based on the true SOH
values of the previous cycles and can provide additional guidance
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locally in the neural network during training. Compared to a single
onstraint based on the global loss, multi-objective constraints with
hese additional losses can aid the proposed network in extracting more
ffective features from the preprocessed data, improving the current
ycle SOH prediction.

2.5.1. Global loss
As shown in Fig. 4, for a particular cycle 𝑐, the 2D data matrix

obtained after preprocessing 𝐗𝐜
𝐞𝐧𝐜 ∈ 𝑅300×360 pass through two parallel

nd a fusion network to predict the battery state of health 𝑆 𝑂 𝐻𝑐 cor-
responding to this cycle. The global loss function is calculated between
the predicted 𝑆 𝑂 𝐻𝑐 and the ground truth 𝑆 𝑂 𝐻𝑐 to backpropagate
through all three networks. It is an MSE loss computed as

𝑐
𝑔 =

(

𝑆 𝑂 𝐻𝑐 − 𝑆 𝑂 𝐻𝑐

)2
(34)

where 𝑐
𝑔 refers to the global loss for cycle 𝑐.

2.5.2. Local loss
The local losses are calculated in the PCS-multi-ABi-LSTM network,

s illustrated in Fig. 6(a). For a particular cycle, 𝑐, 𝑃 number of local
losses are calculated in 𝑃 parallel branches, based on the predicted and
round truth SOHs of past 𝑃 cycles as described in Eq. (21). The sum of
hese 𝑃 losses represents the overall local loss which can be formulated
s

𝑐
𝑙 =

𝑃
∑

𝑝=1
𝑀 𝑆 𝐸 (𝑝) (35)

where 𝑐
𝑙 refers to the local loss for cycle 𝑐.

2.5.3. Total loss
The total loss for the proposed framework is computed by combin-

ng the local and global loss as in the following:

𝑐 = 𝛽𝑐
𝑔 + 𝛾𝑐

𝑙 (36)

where 𝑐 refers to the total loss for cycle 𝑐. 𝛽 and 𝛾 are coupling factors
for the global and local losses, respectively, to be chosen appropriately.
In this work, we have set 𝛽 = 1 and 𝛾 = 0.01 after experimentation.
Greater emphasis has been placed on the global loss since it is computed
using the predicted SOH for the current cycle 𝑐 compared to the local
loss, which is based on the predicted SOHs of previous cycles.

2.6. Implementation and training details

All of the experiments conducted to evaluate the proposed frame-
work have used the Kaggle Platform, which provides an NVIDIA Tesla

100 GPU with 29 GB of RAM (random-access memory). The two
arallel and fusion networks in Fig. 4 are initialized with random

weights which get updated with backpropagation from the global and
ocal losses during training. For the ODS-multi-ABi-LSTM network (see

Fig. 5(a)), the number of Bi-LSTM layers and the dimension of hidden
tate 𝑑ℎ in each of the parallel and series ABi-LSTM modules are set to 1
nd 128, respectively. The parallel ABi-LSTM modules in the PCS-multi-
Bi-LSTM (see Fig. 6(a)) also follow the same specifications except for

the series ABi-LSTM module where the number of Bi-LSTM layers and
the dimension of hidden state 𝑑ℎ2 are set to 2 and 512, respectively.
The proposed model has been trained for 100 epochs with the batch
size set to 40. An adaptive moment (Adam) optimizer with an initial
learning rate of 0.001 is utilized to update the model parameters. The
ReduceLROnPlateau strategy is adopted for scheduling the learning
rate.

To evaluate the proposed method’s accuracy on diverse sets of
attery data, we have employed a four-fold cross-validation approach
or both individual and combined datasets. In this approach, each
ataset is first split into four folds. Next, the proposed network is
ested considering one fold at a time, utilizing the remaining three
13 
Table 3
Performance evaluation of the proposed method with varied inputs on the combined
dataset.

Input MAPE (%) MAE RMSE(%) R2

(a) V 0.970 0.007 0.931 0.984
(b) V+ I 0.954 0.007 0.891 0.985
(c) V+ T 0.899 0.007 0.867 0.986
(d) V+ I+ T (Proposed Method) 0.754 0.005 0.680 0.992

folds for training. During the training of each fold, the simulation data
are utilized for data augmentation. With different sets of training and
testing battery data, this method helps to understand the proposed
framework’s generalization capability.

2.7. Performance evaluation metrics

Four common quantitative performance metrics are utilized to as-
sess the performance of the proposed approach for SOH estimation:
mean absolute error (MAE), mean absolute percentage error (MAPE),
root mean square error (RMSE), and coefficient of determination (R2).

hese metrics can be calculated as in the following:

MAE = 1
𝐶

𝐶
∑

𝑐=1

|

|

|

𝑆 𝑂 𝐻𝑐 − 𝑆 𝑂 𝐻𝑐
|

|

|

(37)

MAPE = 1
𝐶

𝐶
∑

𝑐=1

|

|

|

𝑆 𝑂 𝐻𝑐 − 𝑆 𝑂 𝐻𝑐
|

|

|

𝑆 𝑂 𝐻𝑐
× 100% (38)

RMSE =
√

√

√

√
1
𝐶

𝐶
∑

𝑐=1

(

𝑆 𝑂 𝐻𝑐 − 𝑆 𝑂 𝐻𝑐

)2
× 100% (39)

R2 = 1 −
∑𝐶

𝑐=1

(

𝑆 𝑂 𝐻𝑐 − 𝑆 𝑂 𝐻𝑐

)2

∑𝐶
𝑐=1

(

𝑆 𝑂 𝐻𝑐 − 𝑆 𝑂 𝐻
)2

(40)

where 𝐶 denotes the total number of cycles in the test battery. 𝑆 𝑂 𝐻𝑐
nd 𝑆 𝑂 𝐻𝑐 refer to the actual and predicted SOH, respectively, for cycle
, and 𝑆 𝑂 𝐻 refers to the mean of the actual 𝑆 𝑂 𝐻 values of 𝐶 cycles.

3. Experimental results and discussion

In this section, experiments are conducted on four publicly available
atasets and a combination of these four datasets referred to as the com-
ined dataset to evaluate the performance of the proposed framework

for battery SOH estimation. The selection of different components in
the framework is validated by demonstrating the influence of varying
input battery data, the advantage of the data preprocessing scheme, the
ffect model architecture, i.e., selection of the base model, attention
echanism, parallel modular components and loss functions, and the

ffect of data augmentation with simulation data. Finally, the perfor-
ance of the proposed method is compared with other state-of-the-art
ethods [26,40]. These experiments are conducted with full cycle

discharge data as input. Additionally, the real-time SOH estimation
performance of the proposed framework, i.e., SOH estimation at each
sampling time during an ongoing discharge cycle with partial discharge
ata instead of at the end of the full discharge cycle, is also presented

along with a comparison with another state-of-the-art method [40].

3.1. Influence of varying input data

Recent research on deep learning-based SOH estimation algorithms
utilized raw sensor data [6,15,33,34,40] such as, voltage (V), current
(I), and temperature (T) or processed data from the raw V and I
such as discharging capacity vs. voltage curve [35], IC curve [35],
differential current curves [11], differential voltage curve [32], and
capacity changing curve [11] as input to the automatic feature extrac-
tion network. However, in the proposed framework, only raw sensor
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Table 4
Performance evaluation of the proposed method with different preprocessing schemes
on the combined dataset.

Preprocessing Method MAPE (%) MAE RMSE(%) R2

(a) ICS 6.272 0.049 5.773 0.423
(b) EDVCS 0.960 0.006 0.741 0.990
(c) EDVCS+ GE (Proposed Method) 0.754 0.005 0.680 0.992

data has been used as input to avoid the additional computational
cost of processing the data. Different combinations of V, I, and 𝑇
data have been fed as inputs to the proposed network to observe
input variation’s effect on SOH estimation, summarized in Table 3 for
he combined dataset. It can be observed that the combination of all
hree sensor data V, I, and 𝑇 provide superior SOH estimation results
ith 0.754% MAPE, 0.005 MAE, 0.680% RMSE, and 0.992 R2. Since

he battery cells of the four datasets discharge with different C-rated
urrents and operating temperatures, including I and 𝑇 inputs can
odel the effect of discharging current and temperature variation on

attery health degradation, providing complementary information to
aw voltage data, and therefore obtains better SOH estimation results
n the combined dataset. This is proved by the gradual improvement in
OH estimation accuracy from (a) to (d) in Table 3, specifically 0.216%,
.002, and 0.251% decrease in MAPE, MAE and RMSE, respectively,
.008 increase in 𝑅2 with the combined input V, I and 𝑇 compared to
 data alone.

3.2. Effect of the data preprocessing scheme

In our proposed framework, the raw sensor data are preprocessed
n two steps: (i) Energy discrepancy aware variable cycle length syn-
hronization (EDVCS) and (ii) Grid encoding (GE). To show the effect
f the proposed synchronization approach, EDVCS, an interpolation-
ased cycle length synchronization (ICS) method is applied where the

variable lengthed cycle data, due to the increase in cycle number
or variation in discharge current rates, are synchronized to a fixed
length 360 (same as the EDVCS) using the ‘cubic spline’ interpolation
approach. From the results presented in Table 4, it can be observed
hat the ICS preprocessing approach shows subpar performance on the
ombined dataset with 6.272% MAPE, 0.049 MAE, 5.773% RMSE and
.423 R2. This is expected because, without the energy discrepancy

constraints, the discrepancies across the cycled data with the increase
f battery health degradation are scaled down after interpolation-based

cycle length synchronization. In addition, the variation in cycle length
due to variation in discharging current rates despite the same SOH is
not handled properly in this method. This is another reason for lower
performance in the combined dataset where battery cells with varied
discharging current rates are present. In the first preprocessing step of
he proposed framework, EDVCS, both of these issues are considered,
s discussed in Section 2.3.1 showing a great improvement in SOH

estimation performance. As can be observed from Table 4 (b), the
EDVCS approach outperforms the ICS in (a) by 5.312%, 0.043, 5.032%
decrease in MAPE, MAE and RMSE, respectively, and a 0.567 increase
in R2 value. The addition of the second preprocessing step, GE, further
improves the SOH estimation performance with 0.21%, 0.043, and
0.061% decreases in MAPE, MAE and RMSE, respectively. These results
prove that our grid encoding scheme effectively increases the minor
discrepancies within the cycled data of varied states of health and helps
the proposed network to effectively model the cycling data of different
batteries with different specifications, in the combined dataset, to their
corresponding SOHs, thus obtaining generalizability.

3.3. Effect of the model architecture

3.3.1. Impact of base model selection
As shown in Fig. 4, the basis of the proposed architecture is the ABi-

LSTM network. The selection of this Bi-LSTM network was based on
14 
Table 5
Performance evaluation of different RNN models on the combined dataset.

Models MAPE (%) MAE RMSE(%) R2

GRU 1.584 0.009 1.263 0.970
LSTM 1.475 0.008 1.178 0.980
Bi-LSTM 1.220 0.007 0.985 0.985

the performance comparison with other RNN models such as GRU and
LSTM, as presented in Table 5, demonstrating the efficacy in modeling
the time series preprocessed discharge battery data and mapping them
into battery SOH. From Table 5 it can be observed that the Bi-LSTM
model outperforms GRU and LSTM with 1.220% MAPE, 0.007% MAE,
0.985% RMSE and 0.985 R2. As discussed in Section 2.4.1, compared
to LSTM and GRU, the Bi-LSTM model can better capture the depen-
encies in the input sequential data by processing it in both forward
nd backward directions providing better SOH estimation. Hence it is
elected as the base model in the proposed architecture.

3.3.2. Impact of attention mechanism
After the data preprocessing step, the sampled voltage, current and

temperature data over increasing cycles achieve synchronized lengths
(360 in this paper). However, hidden state features extracted from these
data by the Bi-LSTM network at each of the sampling times, ranging
from 1 to 360, may not be equally important for battery health predic-
tion. The sampling times, at which these battery data largely vary over
the cycles, can better model the relation between the cycle-varying data
and the corresponding SOH and contribute more to the SOH estimation.
The temporal attention mechanism in this work is employed on the
hidden state features of the Bi-LSTM network such that the features
from the more important sampling times are assigned higher weights
compared to the less important ones, dynamically, during the training
of the network. As shown in Table 6, ABi-LSTM achieves a 0.198%,
0.001, and 0.201% decrease in MAPE, MAE and RMSE, respectively,
nd a 0.006 increase in the R2 value compared to the base Bi-LSTM
etwork. This substantiates that the attention mechanism can improve
he performance of SOH estimation. Hence, ABi-LSTM is selected as the
ore network in the proposed framework in Fig. 4.

3.3.3. Impact of ODS-multi-ABi-LSTM
The ODS-multi-ABi-LSTM is employed to further improve the per-

ormance of the ABi-LSTM network. As shown in Table 6, the ODS-
multi-ABi-LSTM network provides better SOH prediction with 0.892%

APE, 0.006 MAE, 0.715% RMSE, and 0.992 R2 compared to a single
Bi-LSTM. This network extracts features from the preprocessed data
y splitting it into overlapping time segments through multiple parallel
Bi-LSTM networks which facilitates efficient feature extraction from
horter data segments and better learning of the dependencies within a
articular sequence in comparison to a single ABi-LSTM network with
ull cycle length data (1 to 360) as input.

3.3.4. Impact of PCS-multi-ABi-LSTM
The PCS-multi-ABi-LSTM shows the impact of a time-series fore-

asting approach on SOH estimation accuracy compared to direct SOH
stimation through a single ABi-LSTM network. As can be observed
rom Table 6, this approach achieves a 0.11% and 0.018% decrease
n MAPE and RMSE, respectively over the ABi-LSTM network. This

network, with parallel ABi-LSTM networks for predicting previous cy-
les’ SOHs followed by another ABi-LSTM for forecasting them into
urrent cycle SOH prediction, is guided by both local and global losses
n an end-to-end training manner (as shown in Fig. 6(a)). Utilization

of multiple loss functions enforces better feature learning from the
preprocessed data. Therefore, in comparison to a single ABi-LSTM
network trained with only the global loss based on the true value of
the current cycle SOH, the PCS-multi-ABi-LSTM provides better SOH
estimation.
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Table 6
Ablation experiment showing the effect of multiple parallel modules in the proposed
ramework using the combined dataset.
Model MAPE (%) MAE RMSE(%) R2

(a) Bi-LSTM 1.220 0.007 0.985 0.985
(b) ABi-LSTM 1.022 0.006 0.784 0.991
(c) ODS-multi-ABi-LSTM 0.892 0.006 0.716 0.992
(d) PCS-multi-ABi-LSTM 0.912 0.006 0.766 0.991
(e) c + d + FN (Proposed Method) 0.754 0.005 0.680 0.992
(f) e + simulation data augmentation 0.716 0.005 0.653 0.992

Table 7
Performance comparison among different models on NASA dataset.

Method MAPE (%) MAE RMSE(%) R2

Li et al. [26] 4.292 0.033 3.689 0.839
Qin et. al [40] 2.358 0.017 2.431 0.905
Wang et al. [36] 2.532 0.019 2.091 0.941
Proposed Method 0.921 0.007 0.807 0.991

Table 8
Performance comparison among different models on Oxford dataset.

Method MAPE (%) MAE RMSE(%) R2

Li et al. [26] 2.629 0.023 2.686 0.783
Qin et. al [40] 1.097 0.009 1.517 0.932
Wang et al. [36] 2.031 0.017 1.853 0.913
Proposed Method 0.272 0.002 0.440 0.994

3.3.5. Impact of FN
The addition of a fusion network combining the features of ODS-

multi-ABi-LSTM and PCS-multi-Bi-LSTM, as in the proposed architec-
ture (see Fig. 4), provides superior performance to individual ODS-
multi-ABi-LSTM and PCS-multi-ABi-LSTM networks. As shown in Table 6
he proposed method predicts battery SOH with 0.754% MAPE, 0.005

MAE, 0.680% RMSE, and 0.992 R2 values on the combined dataset.
This indicates a decrease of 0.138%, 0.001, 0.036% in MAPE, MAE
and RMSE, respectively, compared to the ODS-multi-ABi-LSTM network
alone and a decrease of 0.158%, 0.001, 0.086% in MAPE, MAE and
RMSE, respectively, compared to the PCS-multi-ABi-LSTM network.
The better SOH estimation results indicate efficient feature mixing in
the fusion network through concatenating the extracted features of
the ODS-multi-ABi-LSTM and PCS-multi-ABi-LSTM network and then
passing them through two fully connected layers.

3.4. Effect of data augmentation with simulation data

In the preceding subsections, the effect of varying input data, data
reprocessing technique, and model architecture were demonstrated
tilizing solely the experimental datasets (NASA, Oxford, MIT, CALCE)
o discretely show the influence of data augmentation during training.
s can be observed from Table 6, with the addition of simulation data,
ur proposed method achieves 0.716% MAPE, 0.005% MAE, 0.653%

RMSE and 0.992 R2 value on the combined dataset. This indicates
a 0.038% and 0.027% decrease in MAPE and RMSE, respectively
over the proposed method trained with only experimental data. The
augmentation with simulation data of a distinct battery cell under
different operating conditions further enhances our model’s learning
during training. Incorporating additional data, the model can extract
more generalized features that reflect the relationship between diverse
voltage, current, and temperature data under diverse operating condi-
tions and the resulting change in battery health deterioration patterns,
thereby improving the overall accuracy of battery SOH prediction.

3.5. Comparison with other methods

The SOH estimation performance of the proposed framework is
compared with three existing state-of-the-art methods on the four
15 
Table 9
Performance comparison among different models on MIT dataset.

Method MAPE (%) MAE RMSE(%) R2

Li et al. [26] 1.034 0.009 1.165 0.951
Qin et. al [40] 0.665 0.006 0.728 0.981
Wang et al. [36] 0.682 0.006 0.765 0.981
Proposed Method 0.557 0.005 0.604 0.988

Table 10
Performance comparison among different models on CALCE dataset.

Method MAPE (%) MAE RMSE(%) R2

Li et al. [26] 8.660 0.061 6.494 0.859
Qin et al. [40] 2.237 0.009 1.946 0.984
Wang et al. [36] 3.205 0.018 2.156 0.987
Proposed Method 1.480 0.006 0.962 0.995

Table 11
Performance comparison among different models on Combined dataset.

Method MAPE (%) MAE RMSE(%) R2

Li et al. [26] 9.945 0.076 8.631 −0.619
Qin et al. [40] 2.397 0.018 2.525 0.767
Wang et al. [36] 1.861 0.014 1.581 0.953
Proposed Method 0.716 0.005 0.653 0.992

publicly available datasets individually and on the combined dataset.
The four-fold cross-validation results are presented in Tables 7–11. For
each of the datasets, our method outperforms other methods across all
evaluation metrics. In addition, Figs. 8–11 plots the SOH prediction
esults of the proposed and the other three methods for four cells

from each dataset. Li et al. [26] employed a linear regression-based
machine-learning algorithm for predicting battery health status where
the DVW distance between the IC curves of the current and initial
ycle of a particular battery was calculated as the health-indicating

feature. The linear relationship between the extracted features and
the corresponding SOH was enhanced by the box-cox transformation
method and finally, a linear regression model was fit across the training
data. Like most machine learning algorithms, their method suffers from
optimum feature selection and generalizability problems. The fitted
inear model is biased towards the training data and achieves low

SOH estimation accuracy for unknown battery data. Among all of the
atasets, this method performs comparatively better on the Oxford
see Table 8) and MIT datasets (see Table 9) since the battery cells
n this dataset have similar discharging profiles. However, with the
andcrafted feature as input the linear model cannot be effectively fit
cross battery cells with varying discharging profiles and hence obtains

low SOH estimation accuracy on the NASA (see Table 7), CALCE (see
Table 10) and the combined dataset (see Table 11). Qin et al. [40]
employed a deep learning-based algorithm for automatic feature ex-
traction from discharging voltage, and temperature data and achieves
superior performance to the previous machine learning-based approach
(see Tables 7–11). An energy discrepancy aware time warping approach
and grid encoding were adopted as the preprocessing scheme and the
reprocessed data was fed to a time attention based Bi-LSTM model
or mapping to the corresponding SOH. However, since their method
as evaluated across a single dataset, their preprocessing scheme did
ot take into account the cases of multiple battery cells with varying
ischarging profiles. In addition, in their time attention approach, a

fixed discharging time interval was selected based on the training
ata and other samples of that discharging cycle were discarded. This

fixed discharging time interval may not provide optimum results for
any unknown test battery data with different specifications. Wang
et al. [36] implemented an explainable deep learning based algorithm
based on LSTM and CNN network to automatically extract features
from voltage, current, and temperature data. Though their method is
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Fig. 7. Bar plot of RMSE for different methods on sixteen different battery models from four datasets (NASA, Oxford, MIT, and CALCE).
Fig. 8. SOH estimation performance comparison of the proposed method with other methods on NASA dataset.
Fig. 9. SOH estimation performance comparison of the proposed method with other methods on MIT dataset.
outperformed by the works of Qin et al. on four individual datasets (see
Tables 7–10), it outperforms other two state-of-the-art methods on the
combined dataset (see Table 11).

In contrast to the works of Qin et al. [40], our preprocessing scheme
can handle battery cells with diverse discharge profiles. The temporal
attention module in the proposed network assigns weights for the
16 
discharging sampling times according to their importance during train-
ing without completely discarding any of the samples. Furthermore,
instead of using a single LSTM network, our approach explores the
possibility of variations and series-parallel combinations of multiple
LSTM networks. Our proposed overlapped data splitting allows the Bi-
LSTM network to captures enhanced temporal context while increasing
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Fig. 10. SOH estimation performance comparison of the proposed method with other methods on Oxford dataset.
Fig. 11. SOH estimation performance comparison of the proposed method with other methods on CALCE dataset.
data diversity. From Tables 7–11, it can be observed that our method
outperforms the best-comparing technique, Qin et al. [40] in all four
individual datasets and achieves a 1.681%, 0.013, and 1.872% decrease
in MAPE, MAE and RMSE, respectively, and 0.225 increase in 𝑅2 value
for the combined dataset. However, it should be noted that while
implementing the method of Qin et al. [40], our preprocessing scheme
has been adapted since the preprocessing equations presented in their
paper contained possible errors regarding matrix dimensions mismatch
and could not be implemented. Nevertheless, despite using the same
preprocessing technique, the proposed method yields the best SOH
estimation performance with its novel parallel architecture and fusion
mechanism in place of a single LSTM network and augmentation of
training data via the presented battery simulation model.

The bar plot in Fig. 7 illustrates the superior performance of the
proposed method across various battery models compared to other
state-of-the-art methods. Excluding the MIT_30 battery cell, the pro-
posed method achieves a notably lower RMSE on all battery cells. The
efficacy of the proposed technique is also evident from the SOH (%)
vs cycle plots and the corresponding error (%) plots in Figs. 8–11.
Compared to Li et al. [26], Qin et al. [40], and Wang et al. [36], our
SOH (%) prediction curves are smoother, have less randomness and are
closer to the ground truth values.

3.6. Real-time SOH estimation

The SOH estimation performance presented in Tables 7–11 and
Figs. 8–11 are end of discharging cycle SOH estimation. However, for
17 
real-life applications of lithium-ion batteries, battery health status is
predicted using the proposed method at each sampling time of an
ongoing discharging cycle by utilizing the future data reconstruction
technique described in Section 2.4.4. The results are presented in
Fig. 12(a)–(d) and compared with the technique of Qin et al. [40].

From the plots (Fig. 12(a)–(d)), it can be observed that for each
cycle, SOH estimation errors are higher for the initial sampling times
and gradually decrease towards the end of the cycle. This is more
evident from Fig. 12(e)–(h), where error distribution over all cycles
(up to the end of life) at different sampling times for four battery
cells, one from each dataset, is presented. The median RMSE error,
represented with the ‘o’ sign, decreases with the increase in time. At
the initial sampling times, the reconstructed full cycle contains less
of the real-valued samples and more of the reconstructed samples,
yielding low SOH estimation accuracy. However, after a certain time
(101𝑡ℎ sampling instant in Fig. 12(e)–(h)), the RMSE error remains
under a considerable margin, 0 to 5%, for the proposed method. For
both Fig. 12(a)–(d) and (e)–(h), the true SOH value at the end of
the corresponding discharging cycle is considered the ground truth.
Although the same data reconstruction technique and preprocessing
approach have been applied for both Qin et al. [40] and the proposed
method, our predicted SOHs are closer to the ground truth value at each
sampling time, as demonstrated in Fig. 12(a)–(d). These results further
verify the efficacy of the parallel modules, multiple loss functions and
data augmentation technique in the proposed network architecture for
higher battery health status prediction accuracy.



J. Tasnim et al. e-Prime - Advances in Electrical Engineering, Electronics and Energy 11 (2025) 100870 
Fig. 12. Real-time SOH estimation performance of the proposed method with increasing cycle numbers for battery cells: (a) B0005 (NASA dataset); (b) Cell 2 (Oxford dataset);
(c) Cell 35 (MIT dataset); (d) CS2 36 (CALCE dataset), error distribution over all cycles at different sampling times for battery cells: (a) B0005 (NASA dataset); (b) Cell 2 (Oxford
dataset); (c) Cell 35 (MIT dataset); (d) CS2 36 (CALCE dataset).
4. Conclusion

This paper has proposed a novel framework for real-time SOH
estimation of lithium-ion batteries, emphasizing high accuracy and
generalization across diverse battery sets. The framework includes a
unique preprocessing scheme that incorporates energy discrepancy-
aware cycle length synchronization and grid encoding, normalizing
data from varied battery cells with differing discharge profiles and tem-
peratures to create a standardized input. Unlike typical deep learning
approaches that rely on a single RNN or CNN architecture, the proposed
18 
framework employs two parallel networks – ODS-multi-ABi-LSTM and
PCS-multi-ABi-LSTM – to extract complementary features for SOH es-
timation. These features are then integrated using a fusion network.
It has been demonstrated that the use of multi-objective loss func-
tions, comprising global and local losses, can further enhance the SOH
prediction accuracy. Additionally, simulation-based data augmenta-
tion enriches the training dataset, promoting more generalized feature
learning and improved SOH estimation performance. The framework’s
efficacy is demonstrated through superior performance across all evalu-
ation metrics, surpassing state-of-the-art techniques on four distinct and
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combined datasets. However, for real-time SOH estimation, the adopted
uture data reconstruction algorithm assumes that the discharging cycle
tarts from a fully charged condition of the battery which may not be
he case in many practical applications. Also, real-world applications
xhibit extremely fluctuating currents due to dynamic driving patterns
hich is not the case for available four datasets. Future work will

address these limitations by incorporating flexible cycle start points.
Enhanced techniques to simulate full discharge cycles and adaptive
filters for fluctuating currents may also be explored to accommodate
real-world driving patterns and improve SOH estimation robustness.
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